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Recap: Neural Scaling Laws

@ Practical Deepnets are obscenely large and complicated systems.
@ Want: predict performance in terms of available resources.

@ Last week: Empirical evidence that loss on task (e.g., next token
prediction) exhibits power law decay in [resource type].

@ Approach taken: basically fit parametric power law to tons of
experiments...

@ This session: examine stylized models where such behavior arises
and is provably quantifiable.
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Moving Parts, or: What affects the loss?

@ D : size of data set

@ P : Number of model parameters
Initially in paper: exclusively feed-forward NNs of moderate
(fixed) depth. P increased by increasing width. Note: W o +/P.

@ Properties of the data distribution. If data has intrinsic
low-dimensional structure, expect (hope!) this helps learning.

@ Properties of the loss function.
Not in this presentation.
Paper gives examples for some pathological cases.

@ Goal: Scaling laws,
Lox D™, Lo P~ (eqv., L oxc W™W),
(under different mutual scaling regimes, TBD.)
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The Variance-Limited Regime

o Paradigm: Fix either D or P; examine loss as other parameter — oco.

@ For this presentation: assume loss is “nice”.
l.e.: twice-differentiable with bounded second derivative.
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Variance-limited regime - Dataset scaling

o Fixed P with D — oo; formally: data is i.i.d. xq,...,xp ~ D.
Claim:
L(D) x D™' +const as D — oo.

@ Sketch:
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Variance-limited regime - Dataset scaling

o Fixed P with D — oo; formally: data is i.i.d. xq,...,xp ~ D.
Claim:
L(D) x D™' +const as D — oo.

@ Sketch:

o Step I: Let f(x|X1.p) be the trained model; let f(x) = Ep[f(x|X1.0)]
be its expectation over data (and possibly randomness in training
process). As D — oo,

EvpE[(F(x) — f(x))?] < D

Intuition: Parametric statistics; nice model (non-singular fisher
information) implies MSE o 1/D.
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Variance-limited regime - Dataset scaling

o Fixed P with D — oo; formally: data is i.i.d. xq,...,xp ~ D.
Claim:
L(D) x D™' +const as D — oo.

@ Sketch:

o Step I: Let f(x|X1.p) be the trained model; let f(x) = Ep[f(x|X1.0)]
be its expectation over data (and possibly randomness in training
process). As D — oo,

EvpE[(F(x) — f(x))?] < D

Intuition: Parametric statistics; nice model (non-singular fisher
information) implies MSE o 1/D.

o Step II: Taylor-expand the loss around f,
L[f] = Ept(f(x))
= Ep[¢(f(x))] + Enl¢ (F(x))(f(x) — f(x))] + Ep [5"(5)("(X) - f(X)f] :

const =0

xD—1
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Variance-limited regime - Large width scaling

o Fixed D with W — oo; random initial weights.
Claim:
L(D) x W™ const as W — oco.
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Variance-limited regime - Large width scaling

o Fixed D with W — oo; random initial weights.
Claim:
L(D) x W™ const as W — oco.

o Idea: Previous works shown that f(x) = #(x|©) converges to a
Gaussian process. In particular,

Eo[(f(x) = f(x))*] o 1/ W,

where f(x) := Eg[f(x|©)]. Same reasoning as before.
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Variance-limited regime - Large width scaling

o Fixed D with W — oo; random initial weights.

Claim:
L(D) x W™ const as W — oco.

o Idea: Previous works shown that f(x) = #(x|©) converges to a
Gaussian process. In particular,

Eo[(f(x) = f(x))*] o 1/ W,
where f(x) := Eg[f(x|©)]. Same reasoning as before.
@ Summary: Exponents in variance limited regime,
ap=aw =1.

Universal (under “niceness’ assumption).
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Resolution-limited regime

@ Previously we fixed either D or P. Rather boring scaling.

@ Now: both P,D > 1. Two cases:
(1) Over-parameterized: P> D > 1,
(2) Under-parameterized: D > P > 1.

@ Furthermore, assume data has intrinsic low dimension.
Specifically, x1,...,xp are i.i.d. uniform on low-dim compact
manifold M.
Corresponding labels: y; = f(x;), f: Mg — R.
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Warm up |: Over-parameterized regime

@ Suppose P > D. In this regime, network has enough parameters to

memorize the data.

Assume f interpolates data, e.g. zero training loss: f(x;) = f(x;)

forall1 <i<d.

e For x € My, let &yn(x) be its nearest neighbor among xi, . ..

[x — R (x)| < D9, X, X1y, Xp ~ Mygy.

@ For an interpolator,
[F(x) = FOl = |F0) = F(fun) + F(Ruw) = ()|

- ‘f(x) — () + (R — )?(x)‘
<IF(x) = F (R + [F(fww) — F(x)]
< (Ifllcip + 1 Flleio) x — R

Therefore, assuming f, f have bounded Lipshitz constants,

LIF] = Baxo[If(x) = F()[1 S D7
(Theorem 2 in paper.)
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Warm up Il: Over-parameterized regime

@ Suppose D > P.
No capacity (parameters) to memorize entirely.
Enough parameters to memorize O(P) data points and their
labels.

o Let f be the rule that interpolates on O(P) random pairs (x;, ;).

By previous argument,
LIS P e,

(Theorem 3 in paper.)
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Why are you telling me this?

@ Implicit assumption: NNs can do better than simple interpolators.
@ These are upper bounds; not necessarily saturated in practice.

@ Take home message: scaling law potentially depends on data.
Should £(D) oc D¢/ P=¢/d for some (meaningful) ¢ > 0?

@ Curiously (well, by design), data and parameters exponent upper
bound are the same.
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The Random Features Model
o Let {F; : Mg — R}?_,, be a collection of features. Denote
F(x) =[Fi(x), -~ ,Fs(x)] : Mg —R>.

l.e.: random feature mappings; last layer of trained NN, NTK...
Here S > D, P.

@ Motivation: Previous work has shown that real-world NNs can be
approx'd—to a degree—by suitable feature models.
l.e.: the Neural Tangent Kernel (NTK). Features correspond to
linearization of  around the initial (random) weights.
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The paper considers a teacher-student model, as follows.

Teacher:
yi=w' F(x), xj ~ My, 1<i<D.

Isotropic prior w ~ N(0,S71/s).
Student: uses P “features”. Fix matrix P € RP*S, P is available #
of features.

E.g., P choose P random features uniformly.

The student features are f(x) := PF(x) : My — R,
Denote
F(xa)i i Fxo)]" € RP"S,

E-
f=[F(x); - F(xp)]" € RP*P.

We have y = Fw.

Student fits linear model 8 f(x) by least squares:
0=fly=fFu.
Note: gradient descent on least-squares objective ||y — 8T f||?

converges to this. 12/15



@ Interested in test loss:

L:=TFeux,l(wF(x)— 07 F(x))?].

@ Of particular importance are, resp., the covariance and Gram matrix
of the data:

_ 1 o 1
Ci==F FecRSS,  K.=Zff cRP*P
F Ec , ELLEES ,

@ Resp. in the under- and over- parameterized regimes, we have:
Under-: D> P> 1: C = E[C]=:C,

Over-: P> D> 1: K~ E[K] =: K, K ~ E[K] =: K.

@ Using these, they arrive at substantially simpler approx for L.
... Details - see paper.
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e Turns out: leading-order behavior of limp_,o. £(D, P),
limp_,o L(D, P) determined by spectrum of C, K.

@ When spectrum exhibits power decay,

A\p = n—l7ax
then
lim L£(D,P)x P™%, lim L£(D,P) x D™,
D— oo P—oo

o Fact: when the kernel k(x,x') = L 327 | Fi(x)Fi(x') is smooth, the
spectrum of the corresponding integral operator (hence of C, K)
exhibits power decay. Specifically,

)\n S n—l—t d
when k is t-times continuously differentiable.

@ What have we achieved? Unlike previous hand-wavy argument, have
a model where scaling law &« D=</4 P=¢/4 is essentially precise.

14 /15



That's all | have to say. Let's open up the paper and look at some plots.
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