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Recap: Neural Scaling Laws

Practical Deepnets are obscenely large and complicated systems.

Want: predict performance in terms of available resources.

Last week: Empirical evidence that loss on task (e.g., next token
prediction) exhibits power law decay in [resource type].

Approach taken: basically fit parametric power law to tons of
experiments...

This session: examine stylized models where such behavior arises
and is provably quantifiable.
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Moving Parts, or: What affects the loss?

D : size of data set

P : Number of model parameters
Initially in paper: exclusively feed-forward NNs of moderate

(fixed) depth. P increased by increasing width. Note: W ∝
√
P.

Properties of the data distribution. If data has intrinsic
low-dimensional structure, expect (hope!) this helps learning.

Properties of the loss function.
Not in this presentation.
Paper gives examples for some pathological cases.

Goal: Scaling laws,

L ∝ D−αD , L ∝ P−αP (eqv., L ∝ W−αW ),

(under different mutual scaling regimes, TBD.)
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The Variance-Limited Regime

Paradigm: Fix either D or P; examine loss as other parameter → ∞.

For this presentation: assume loss is “nice”.
I.e.: twice-differentiable with bounded second derivative.
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Variance-limited regime - Dataset scaling

Fixed P with D → ∞; formally: data is i.i.d. x1, . . . , xD ∼ D.
Claim:

L(D) ∝ D−1 + const as D → ∞ .

Sketch:

Step I: Let f̂ (x |X1:D) be the trained model; let f (x) = ED[f̂ (x |X1:D)]
be its expectation over data (and possibly randomness in training
process). As D → ∞,

Ex∼DE[(f̂ (x)− f (x))2] ∝ D−1 .

Intuition: Parametric statistics; nice model (non-singular fisher
information) implies MSE ∝ 1/D.

Step II: Taylor-expand the loss around f ,

L[f̂ ] := EDℓ(f̂ (x))

= ED[ℓ(f (x))]︸ ︷︷ ︸
const

+ED[ℓ′(f (x))(f̂ (x)− f (x))]︸ ︷︷ ︸
=0

+ED

[
ℓ′′(ξ)(f (x)− f̂ (x))2

]
︸ ︷︷ ︸

∝D−1

.
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Variance-limited regime - Large width scaling

Fixed D with W → ∞; random initial weights.
Claim:

L(D) ∝ W−1 + const as W → ∞ .

Idea: Previous works shown that f̂ (x) = f̂ (x |Θ) converges to a
Gaussian process. In particular,

EΘ[(f̂ (x)− f (x))2] ∝ 1/W ,

where f (x) := EΘ[f̂ (x |Θ)]. Same reasoning as before.

Summary: Exponents in variance limited regime,

αD = αW = 1 .

Universal (under “niceness” assumption).
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Resolution-limited regime

Previously we fixed either D or P. Rather boring scaling.

Now: both P,D ≫ 1. Two cases:
(1) Over-parameterized: P ≫ D ≫ 1,
(2) Under-parameterized: D ≫ P ≫ 1.

Furthermore, assume data has intrinsic low dimension.
Specifically, x1, . . . , xD are i.i.d. uniform on low-dim compact

manifold Md .
Corresponding labels: yi = f (xi ), f : Md → R.
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Warm up I: Over-parameterized regime

Suppose P ≫ D. In this regime, network has enough parameters to
memorize the data.
Assume f̂ interpolates data, e.g. zero training loss: f̂ (xi ) = f (xi )

for all 1 ≤ i ≤ d .

For x ∈ Md , let x̂NN(x) be its nearest neighbor among x1, . . . , xD .

|x − x̂NN(x)| ≍ D−1/d , x , x1, . . . , xD ∼ Md .

For an interpolator,

|f (x)− f̂ (x)| =
∣∣∣f (x)− f (x̂NN) + f (x̂NN)− f̂ (x)

∣∣∣
=

∣∣∣f (x)− f (x̂NN) + f̂ (x̂NN)− f̂ (x)
∣∣∣

≤ |f (x)− f (x̂NN)|+ |f̂ (x̂NN)− f̂ (x)|

≤ (∥f ∥Lip + ∥f̂ ∥Lip)|x − x̂NN |.

Therefore, assuming f , f̂ have bounded Lipshitz constants,

L[f̂ ] := Ex,X1:D
[|f (x)− f̂ (x)|] ≲ D−1/d .

(Theorem 2 in paper.)
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Warm up II: Over-parameterized regime

Suppose D ≫ P.
No capacity (parameters) to memorize entirely.
Enough parameters to memorize O(P) data points and their

labels.

Let f̂ be the rule that interpolates on O(P) random pairs (xi , yi ).
By previous argument,

L[f̂ ] ≲ P−1/d .

(Theorem 3 in paper.)
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Why are you telling me this?

Implicit assumption: NNs can do better than simple interpolators.

These are upper bounds; not necessarily saturated in practice.

Take home message: scaling law potentially depends on data.
Should L(D) ∝ D−c/d ,P−c/d for some (meaningful) c > 0?

Curiously (well, by design), data and parameters exponent upper
bound are the same.
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The Random Features Model

Let {Fi : Md → R}Si=1, be a collection of features. Denote

F (x) = [F1(x), · · · ,FS(x)] : Md → RS .

I.e.: random feature mappings; last layer of trained NN, NTK...
Here S ≫ D,P.

Motivation: Previous work has shown that real-world NNs can be
approx’d—to a degree—by suitable feature models.

I.e.: the Neural Tangent Kernel (NTK). Features correspond to
linearization of f̂ around the initial (random) weights.
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The paper considers a teacher-student model, as follows.

Teacher:

yi = ω⊤F (xi ), xi ∼ Md , 1 ≤ i ≤ D.

Isotropic prior ω ∼ N(0,S−1IS).

Student: uses P “features”. Fix matrix P ∈ RP×S , P is available #
of features.
E.g., P choose P random features uniformly.
The student features are f(x) := PF (x) : Md → RP .

Denote

F = [F (x1); · · · ;F (xD)]
⊤ ∈ RD×S ,

f = [f (x1); · · · ; f (xD)]⊤ ∈ RD×P .

We have y = Fω.

Student fits linear model θ⊤f (x) by least squares:

θ̂ = f †y = f †Fω.

Note: gradient descent on least-squares objective ∥y − θ⊤f ∥2
converges to this.
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Interested in test loss:

L := Ex,ω,X1:D
[(ω⊤F (x)− θ̂⊤f (x))2].

Of particular importance are, resp., the covariance and Gram matrix
of the data:

C̄ :=
1

D
F⊤F ∈ RS×S , K̄ :=

1

P
f f ⊤ ∈ RD×D ,

K̄ :=
1

S
FF⊤ ∈ RD×D

Resp. in the under- and over- parameterized regimes, we have:
Under-: D ≫ P ≫ 1: C̄ ≈ E[C̄ ] =: C ,
Over-: P ≫ D ≫ 1: K̄ ≈ E[K̄ ] =: K , K̄ ≈ E[K̄] =: K.

Using these, they arrive at substantially simpler approx for L.
... Details - see paper.
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Turns out: leading-order behavior of limD→∞ L(D,P),
limP→∞ L(D,P) determined by spectrum of C ,K.

When spectrum exhibits power decay,

λn ≍ n−1−αK ,

then

lim
D→∞

L(D,P) ∝ P−αK , lim
P→∞

L(D,P) ∝ D−αK .

Fact: when the kernel k(x , x ′) = 1
S

∑S
i=1 Fi (x)Fi (x

′) is smooth, the
spectrum of the corresponding integral operator (hence of C ,K)
exhibits power decay. Specifically,

λn ≲ n−1−t/d

when k is t-times continuously differentiable.

What have we achieved? Unlike previous hand-wavy argument, have
a model where scaling law ∝ D−c/d ,P−c/d is essentially precise.
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That’s all I have to say. Let’s open up the paper and look at some plots.

15 / 15


