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Motivation -
Internet data will be polluted with LLM [ Ml

generated data

Model collapse: repeated training on
Al-generated data degenerates performance

This paper: theoretical explanation for this
trend
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Simplified Data Distribution Model

Suppose the “true” data distribution is a linear model

(Input) x ~ N(0, %),
(Noise) e ~ N(0,0?), independent of x
(Output / Label) y = z " wgy + €.
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Simplified Data Distribution Model

Suppose the “true” data distribution is a linear model

And we want to minimize the error (excess risk)

Eiest(0) = Eg Ew,y[(xT@ - y)2] —o?

=Eg [|© — wollz],

where (z,y) ~ Py 4, o2 is a random clean test point.



Simplified Data Distribution Model

Suppose the “true” data distribution is a linear model
And we want to minimize the error (excess risk)

What if we train models iteratively, with each model using the previous to generate
data labels?



Data Generation Process

Fake / SyntheSIZed Data Generator
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OLS Warmup

Setting: n models are fit in succession, T > d + 2 (under-parametrized regime)
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OLS Warmup

Setting: n models are fit in succession, T > d + 2 (under-parametrized regime)
Algorithm: Fit OLS at each round with data labels from previous rounds!

Theoretical Bound:

2 2
B (@7°0) o 72 4 M0%0 g 4 gy = 2

C1—¢  1—4¢o

o, ¢ are error noise and d/T for first round

00, ¢0 are error noise and d/T for subsequent rounds



OLS Warmup

Theoretical Bound:
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OLS Warmup

Theoretical Bound:

2 2
~ o) nog oo
Etest (’wﬁred) =

C1—-¢ 1—¢o
Observations:

1. Irreducible + scaling errors
2. If true data is bad then that error will carry over
3. Another error term scales with n



Lessons so far

1. Repeatedly training on “fake” data incurs error linearly growing with n



OLS Warmup

Theoretical Bound:

Bpeps(87ed) o T2 4 000 4 o= =

C1-¢  1-—¢o
Observations:

1. Irreducible + scaling errors
2. If true data is bad then that error will carry over
3. Another error term scales with n

Idea 1: what if TO is large?



Scaling Synthetic Data Size

Say you scale the synthetic data linearly with the round, data = mT



Scaling Synthetic Data Size

Say you scale the synthetic data linearly with the round, data = mT

e 1 1 ~pre
Etest(wgred) e (]. ‘|— 5 ‘|‘ § "‘ 3§ )Etest(wg d)

i lOg n- Etest (,&}gred),



Scaling Synthetic Data Size

Say you scale the synthetic data linearly with the round, data = mT

A 1 ]‘ NPT E
Etest(wgred) ~ (]. + 5 + g + ... )Etest(wg d)

i lOg n- Etest (,&}g'r’ed),

Trade-off collapse with more data and more compute

The model still collapses but at a slower rate!



Lessons so far
1. Repeatedly training on “fake” data incurs error linearly growing with n

2. Dramatically increasing generated synthetic data doesn’t fix the
problem



Motivation for Regularization

Consider the null predictor (i.e. setting all weights to 0)
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Motivation for Regularization

Consider the null predictor (i.e. setting all weights to 0)

Etest (wnull) — ”wO ”%}

If we compare this with the weights learned on the nth round we get
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Motivation for Regularization

Consider the null predictor (i.e. setting all weights to 0)

Etest (wnull) — ”wO ”%}

If we compare this with the weights learned on the nth round we get

Etest(’&}gred) _ 1 ¢ 4+ L ¢0
Etest (wnu”) SNR 1 — ¢ SNRO 1 — Q50

SNR := |jw||Z/0? and SNRg := ||wol|2 /02

The ratio linearly scales with n!

Idea 2: Regularization



Ridge Regression

Idea: use OLS + L2 regularization (Ridge) to reduce complexity



Ridge Regression

Idea: use OLS + L2 regularization (Ridge) to reduce complexity
Case 1. T >=d + 2 (under-parametrized regime)
Error = error (only clean data) + n x scaling factor

= bias + variance + n x scaling factor



Ridge Regression

Idea: use OLS + L2 regularization (Ridge) to reduce complexity
Case 1: T >=d + 2 (under-parametrized regime)
Error = error (only clean data) + n x scaling factor
= bias + variance + n x scaling factor
Case 2. T <d + 2 (over-parametrized regime)
Error = new bias + variance + n x another scaling factor

Moreover new bias > bias



Lessons so far
1. Repeatedly training on “fake” data incurs error linearly growing with n
2. Dramatically increasing generated synthetic data doesn’t fix the problem

3. Simple regularization also doesn’t fix the problem



Adaptive Regularization (Simplified)

Assumption: spectral conditions on the feature covariance matrix
(Capacity Condition) \; < j P forall j € d],
(Source Condition) ||~/2"wyq| = O(1),

Capacity: how dispersed are the Xs

Source: how dispersed is w0 in relation to spectrum of feature covariance matrix



Adaptive Regularization (Simplified)

Assumption: spectral conditions on the feature covariance matrix
(Capacity Condition) \; < j P forall j € d],
(Source Condition) ||~/2"wyq| = O(1),

Algorithm: allow for adaptive (decaying with samples T) regularization rate for the
L2 regularizer

Eypeost (0PT¢?%) < max(o?, TA—2eE—L/8)y . - (1—4/B)
2

_|_
1 — oo

max (T'/Ty, ¢o) - T~ L=/P)



Lessons so far

1. Repeatedly training on “fake” data incurs error linearly growing with n
2. Dramatically increasing generated synthetic data doesn’t fix the problem
3. Simple regularization also doesn'’t fix the problem

4. For special cases, adaptive regularization helps alleviate model collapse



Is Model Collapse Inevitable? Breaking the
Curse of Recursion by Accumulating Real
and Synthetic Data

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight,
John Hughes, Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromoyv,
Daniel A. Roberts, Diyi Yang, David L. Donoho, Sanmi Koyejo



Motivation
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Data Generation Process

Same old setting model from Dohmatob et al

(Input) x ~ N(0, %), 1
(Noise) e ~ N(0,0?), independent of x
(Output / Label) y = z " wgy + €. )

~

Minimize excess risk: Biest (@) = Eg Ewy[(azTﬁ} . y)2] _ 52
=Eg [[|© — wollz],

where (z,y) ~ Py 4, -2 is a random clean test point.



Data Generation Process

( Fake / Synthesized Data Generator

Wy = wy W1 Wo —> ... (?
e L . ,D ﬂ_JJ ______________
S o e
Xo | | Yo X ||y, X, | v,
Yo = Xowo + Eo(0o) Y, = X1 + E(0y) Y. =X i, B

.. except old data is not “replaced” but new data is added & data accumulates




Theory Results

Consider the basic OLS case from before, T >= d/2 (under-parametrized) &
isotropic features, the test errors without and with accumulation are:

2
Replace /_, o<d
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Theory Results

Consider the basic OLS case from before, T >= d/2 (under-parametrized) &
isotropic features, the test errors without and with accumulation are:

2

Replace ; . od
EteSIt) ( n):T_d—].xn
2 2
o-d T
B ™ (@) < e x ™

Error is not longer scaling with n!



Intuition

If there is no prior data, the model is more affected by the noise from the
previously generated synthetic data

- With accumulation, synthetic data is only 1/n th of the total data
- Squared loss => effect only proportional to (1/n)*2

- But (1/n)*2 is summable!



Experiments
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Experiments

Diffusion Models For Molecule Generation

Replace Accumulate
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Experiments

Variational Autoencoders For Image Data
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So far, we've seen two somewhat naive approaches to
using synthetic data to train a model.

Replace Data Accumulate Data

Modell| | Model
)
[: Trainin
Data

Model-Fitting Iteration Model-Fitting Iteration

[Dohmatob et al., 2024] [Gerstgrasser et al., 2024]



Are there alternative approaches that could allow for
significant self-improvement?

Replace Data

Test Loss

Model-Fitting Iteration

[Dohmatob et al., 2024]
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aybe significantly improve
model capabilities?
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[Gerstgrasser et al., 2024]
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Are there alternative approaches that could allow for
significant self-improvement?

- A few recent works show positive results
- Today, focusing on one such recent paper:

Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges
Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, Dimitris Papailiopoulos




Are there alternative approaches that could allow for
significant self-improvement?

- Afew recent works show positive results
- Today, focusing on one such recent paper:

[ Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges

Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, Dimitris Papailiopoulos

- Key techniques:
Synthetic data filtering/verification
Carefully crafted schedule of synthetic data



Specific type of improvement: easy-to-hard generalization

- Math Tasks

[ 1234 + 5313 = } [ 53*92 = }

l l Generalization: Can we also do

well on problems with more digits?
[ 6547 1 [ 4876 1




Specific type of improvement: easy-to-hard generalization

Math Tasks
String Tasks

[ Copy “12345” }

|

e

[ Reverse “12345” }

N

Generalization: Can we also do
these actions for longer strings?




Specific type of improvement: easy-to-hard generalization

Math Tasks
String Tasks
Maze Solving

Example Maz ‘
(Nodes=8, Hops=5)

Find shortest
path from node
2 to node 19.

~

/

|

|

2>97>70>73>
75>19

Generalization: Can we solve
larger mazes?




Transformers do not tend to generalize well on these

tasks.
Maximum size in training data

accuracy

' Axis of generalization (e.g. number of digits)
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tasks.
Maximum size in training data

L — But they often do quite well on tiny generalizations just
outside of the training data’s scope
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Transformers do not tend to generalize well on these

tasks.
Maximum size in training data

L ~— But they often do quite well on tiny generalizations just
outside of the training data’s scope

|

|

|

|

: Idea: Can we “boost” a model's weak
: generalization capabilities into strong
| generalization capabilities?
|

|

|

|

|

|

|

daccuracy

' Axis of generalization (e.g. number of digits)



The Self-Improvement Setup

Train Dataset

n Train on initial difficulty B ﬁ%@

Repeat for r=1..R self-
improvement rounds

Collect predictions on Jj—l_rl_J_ ______ ______ Jj_l_l_r—l_]_
00D data :ﬁ . J-‘I_ :FE . j.ll_

Self-improvement Dataset
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|deal results of boosting

Maximum size in original training data

daccuracy

' Axis of generalization (e.g. number of digits)



|deal results of boosting

Maximum size in original training data

daccuracy

' Axis of generalization (e.g. number of digits)



|deal results of boosting

Maximum size in original training data

Better and better
—® generalization with
more iterations?

-

' Axis of generalization (e.g. number of digits)

accuracy




Actual Results on Simple Problems (very positive)
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Figure 3: Results on the reverse addition task, where both operands and the output are represented in
reverse order, with the least significant digit first. The self-improvement framework enables a model
initially trained on 1-16 digit examples to generalize perfectly to over 100-digit addition.
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Takeaway: Carefully curating the
schedule on which synthetic data
is introduced to the model can
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result in self-improvement gains.
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Number of Digits

Figure 4: Results on string manipulation tasks. (Top) Copy: the model replicates the input string
exactly. (Bottom) Reverse: the model outputs the input string in reverse order. The model initially
trained on strings of length 1 to 10 generalizes to sequences of over 120.



An Extra Step for More Complicated Problems

Self-improvement Dataset
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An Extra Step for More Complicated Problems

l Continue tra ining on J%&@
eeeeeeeeeeeeeee o B




Filtering

- Low-quality synthetic data leads to low-quality improvement (or degradation)
- ldea: Do some filtering of the synthetic data at each step to ensure better

quality.
- Important: Want approaches to be unsupervised, i.e. not require an external
verifier.
VALY
» Find max length in batch ¢ ) . Train several parallel models & ) G ( - v
- Filter example shorter than e > ?(__[_)% . Admit examp]e on|y|F E : 3 E : 3 E : 3 j
(max length - constant) enough predictions match & ) p— ( =
P e




Adding filtering allows for self-improvement on more
complicated tasks.

Forward Addition - vanilla

Forward Addition - length filter

Number of Hops

Number of Hops
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Watch out for the data avalanche

- Errors in low-quality synthetic data can accrue over rounds of
self-improvement.

Maze (Hops) - Data Accuracy by Round 1.0
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Watch out for the data avalanche

- Errors in low-quality synthetic data can accrue over rounds of

self-improvement.
Maze (Hops) - Data Accuracy by Round
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How much error is too much?



Watch out for the data avalanche

- Errors in low-quality synthetic data can accrue over rounds of
self-improvement.
- Based on simulated mistakes, more error can be tolerated in later rounds.

round 5 round 20
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Figure 24: Simulating error avalanche. Synthetic mistakes of varying noise levels are injected at the
end of rounds 5 and 20. The self-improvement process continues for 5 more rounds, and the resulting
accuracy is recorded. The model tolerates errors up to a certain threshold, with greater tolerance
observed in later self-improvement rounds.



Future Directions/Questions

- ldentifying difficulty, “safe range” beyond toy problems

- How to even generate example inputs?

Accelerated Copy Accelerated Addition
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Figure 18: Maximum input length achieving over 99% accuracy at different self-improvement rounds
for (Left) Copy task and (Right) Reverse addition. The dashed linear line represents the standard
schedule of sampling one additional length per round. The vertical line is when we start allowing
accelerated schedule. Faster self-improvement schedules allow the model to generalize to longer
inputs with fewer rounds.



Future Directions/Questions

- ldentifying difficulty, “safe range” beyond toy problems

- Scaling effects
- Initial results show better self-improvement results on larger pretrained models

Accelerated Addition
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= From Scratch, Optimistic
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