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1. Online vs Offline RLHF



Online vs Oftline RLHF
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Online vs Oftline RLHF
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2. Coverage Conditions



Global and Local Coverage

Assumption 4.1 (Global Coverage). For all m, we have
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Global and Local Coverage

Assumption 4.1 (Global Coverage). For all m, we have
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Assumption 4.2 (Local KL-ball Coverage). For all e < 0o and all policy  such that Ey.,[KL(7(- | z)||mref (- | 2))] <
€xl, we have
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Global Coverage is Necessary for DPO

Assumption 4.1 (Global Coverage). For all w, we have
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Assumption 4.3 (In Distribution Reward Learning). We assume the DPO policy mqp, Satisfies that:

- [(5 og( T2l 1)) — e, y>)2] < ctpo




Global Coverage is Necessary for DPO

Proposition 4.1. Denote ms as any reference policy such that Assumption 4.1 breaks. Let 114, be the set of DPO
returned policies such that Assumption 4.3 holds. Then there exists policy m € Ilgp, such that J(mw) = —oc.

Proof sketch. Without loss of generality, we consider a promptless setting, and assume that the response space is
Y = {y1,y2,y3}. Again without loss of generality, we assume 7,r only covers y; and ys, and thus Assumption 4.1
breaks. We assume partition function Z = 1 for all 7 but we will be rigorous in the formal proof. Then consider the
following policy 7 such that

(y2)

Tref (y2)

Blog( mv1) > =71"(y1) — \/Edpo, and ﬂlog( ) = 7" (y2) — v/Edpo,

Tref (yl)
One can check 7 satisfies Assumption 4.3. Now consider the optimal policy 7*(y;) = Tref(y;) exp(%r* (yz)) , for

i € {1,2}, and 7*(y3) = 0. Since 7*(y;1) + 7*(y2) = 1, combining everything we get 7(y3) > 0, which implies
KL(7||mef) is unbounded, thus we complete the proof. O



Online RLHF
Lemma 4.1. Suppose that Assumption 4.4 holds. Then for any RLHF policy m.ns, we have that
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Then we can show that the RLHF algorithm can guarantee performance under partial coverage:

Theorem 4.2. Suppose that Assumption 4.4 holds. Then for any reference policy s for which Assumption 4.2 holds
with g = %, and any RLHF policy man with T such that (c.r. Assumption 4.3)

Ex,y’\’poﬂ'ref [(r*(x, y) - ?(377 y))2] S Ereward
we have

J(TF*) - J(Wr”’lf) = O(C€k|v Ereward)-



Hybrid Preference Optimization

Algorithm 1 Hybrid Preference Optimization (HyPO)

require Pretrained LLM 7y, reference policy 7., offline data D, learning rate o, KL coefficient .
1. fort=1,...,7T do
2: Sample a minibatch of offline data Dogs := {z,y",y~} ~ D.

0y * ™ Tz
3: Compute DPO loss £gp, := Zm’y+’y_ €Dy 108 (a (ﬂ log (%) — Blog (%) ) ) g

4: Sample (unlabeled) online data D, := {z,y} where z ~ D,y ~ 7, , ().
(mo,_, (ylz))

5; Compute 4 := >, p log(mg, , (y[z)) - sg(log((frr#yﬁv))».

6: Update 0; = 0;,_1 + « - Vgt_l (gdpo — )‘Ekl)-

return 7.




3. Empirical Experiments



Controlled Setup
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Controlled Setup
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Controlled Setup

o Online vs offline versions of IPO
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Understanding the performance gap
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Goodhart’s law
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Closing the performance gap

Data coverage

Sub-optimal offline dataset
Loss function formulation
Model scale
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Hypothesis 1: Data Coverage
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Hypothesis 1: Data Coverage
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Hypothesis 4: Model Scale
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TL:DR

1. Empirically, on-policy data (in some form) leads
to better performance

2. Many ways to get this kind of data
a. Online RLHF
b. Iterative (oftline RLHF)



