ReForm Reading Group Feb 5, 2025

"Classical" RLHF

Two-stage pipeline: (1) Fitting a reward model through maximum likelihood (2) Learning the optimal policy implied by this reward through RL

label rewards reward model LM policy sample completions reinforcement learning

Step 1: Maximum Likelihood

- To make this tractable, we will assume there exists some reward function r(x, y) such that the values of $r(y_1, x)$ and $r(y_2, x)$ determine the likelihood of a human preferring y_1 to y_2 in response to x
- Accomplishing our goal then reduces to learning this function

Goal: Train a reward model that predicts, given a prompt x, which of two responses (y_1, y_2) will be preferred by humans

The Bradley-Terry Model

• Given *i* and *j* with "strengths" β_i and β_i , the probability of preferring *i* to *j* is: $\mathbb{P}(i \succ j) = \frac{1}{1 + \exp(\beta_j - \beta_i)}$

Given a dataset of pairwise comparisons \mathcal{D} , the resulting empirical loglikelihood is:

 $\frac{1}{|\mathcal{D}|} \sum_{(i,i) \in \mathcal{O}}$

• Maximum likelihood will then recover "optimal" strengths β

$$\int \log \sigma(\beta_i - \beta_j)$$

Bradley-Terry in Context

- Instead of directly parameterizing the "strength" of prompts, we parameterize the reward function
- Given a dataset $\mathcal{D} = \{(x, y_1 \succ y_2)\}_{i=1}^N$

Empirical Log-Likelihood = $-\frac{1}{2}$

- Learning r_{θ} via maximum-likelihood gives us the desired reward model

$$\begin{cases} \sum_{i=1}^{N} \text{ of prompts and preferences:} \\ \frac{1}{2} \sum_{x,y_1,y_2} \log \sigma(r_{\theta}(x,y_1) - r_{\theta}(x,y_2)) \end{cases}$$

Step 2: Reinforcement Learning

- Relatively simple loop
 - 1. Given a collection of prompts, sample completions
 - 2. Use the trained reward model $r_{\phi}(x, y)$ as the reward in the following objective:

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left[\pi_{\theta}(y \mid x) \mid \mid \pi_{\mathrm{ref}}(y \mid x) \right]$$

strongly from (typically the result of supervised fine-tuning)

• In the above, $\pi_{ref}(y \mid x)$ is a reference policy that we do not wish to deviate too

Issues with RLHF?

- Involves training a separate reward model
- Reinforcement learning step can be computationally expensive
- In general, the method is very indirect one might wonder if preferences can be mapped to model changes directly

DPO

Direct Preference Optimization (DPO)

x: "write me a poem about the history of jazz"

RLHF, without Reinforcement Learning

final LM

maximum likelihood

DPO

Direct Preference Optimization (DPO)

x: "write me a poem about the history of jazz"

final LM

maximum likelihood

How is this possible?

Key Trick: Change of Variables

- Recall the RL objective is: $\max_{\pi_{\phi}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \Big[r_{\phi}(x, y) \Big]$ π_{θ}
- The optimal policy π_r has a **closed-form** solution: $\pi_r(y \mid x) = \frac{1}{Z(x)}\pi_r$
- Upon rearrangement, the corresponding reward function is:

$$r(x, y) = \beta \log \frac{\pi_r(y \mid x)}{\pi_{ref}(y \mid x)} + \beta \log Z(x)$$

$$(y) - \beta \mathbb{D}_{\mathrm{KL}} [\pi_{\theta}(y \mid x) \mid \mid \pi_{\mathrm{ref}}(y \mid x)]$$

$$T_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right)$$

Change of Variables cont.

- Let π^* denote the optimal policy corresponding to the **true** reward r(x, y)
- By the results of the previous slide, we can freely translate between the two
- In particular, we can write preference probabilities under the Bradley-Terry model as follows:

$$p^{*}(y_{1} \succ y_{2} \mid x) = \frac{1}{1 + \exp\left(\beta \log \frac{\pi^{*}(y_{2}\mid x)}{\pi_{\text{ref}}(y_{2}\mid x)} - \beta \log \frac{\pi^{*}(y_{1}\mid x)}{\pi_{\text{ref}}(y_{1}\mid x)}\right)}$$

Note that the log-partition terms have cancelled!

Change of Variables cont.

maximum likelihood estimation

The empirical log-likelihood corresponding to our new Bradley-Terry is:

$$\frac{1}{|\mathcal{D}|} \sum_{x, y_1, y_2} \log \sigma \left(\beta \log \frac{\pi_{\theta}(y_1 \mid x)}{\pi_{\mathsf{ref}}(y_1 \mid x)} - \beta \log \frac{\pi_{\theta}(y_2 \mid x)}{\pi_{\mathsf{ref}}(y_2 \mid x)} \right)$$

• Maximum likelihood will give us $\hat{\pi}_{\theta}$?

• Something subtle has happened — we can now directly recover π^* through

$$pprox \pi^*$$
 — no RL needed!

Is DPO a "Free Lunch"?

(2024)

can" given preference data

while **RLHF** is online

In practice, DPO seems to underperform RLHF – e.g. lvison, Wang et al

Rather surprising since mathematically, DPO seems to do "as well as you

Key difference seems to be that DPO is (implicitly) an offline RL method,

Example: Catastrophic Likelihood Displacement Razin, Malladi et al (2024)

Intuition: learning the correct differences between pairs does not imply good global control over behavior!