Reform reading group

Date: 2025-04-23
Binghui Peng

Content

Solving math word problems with process- and outcome-based feedback
http://arxiv.org/abs/2211.14275

Let's Verify Step by Step
https://arxiv.org/abs/2305.20050

http://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2305.20050

0 DeepMind 2022-11-28

Solving math word problems with process-
and outcome-based feedback

Jonathan Uesato!”, Nate Kushman!”, Ramana Kumar!”, Francis Songl, Noah Siegell, Lisa Wangl, Antonia
Creswell!, Geoffrey Irving! and Irina Higgins!
1DeepMind, "Equal contributions

Summary

1. Extensive experiments over GSM8k dataset, comparing
few-shot learning/fine-tuning x majority vote/reward model (PRM/ORM) x RL
2. RL (expert iteration) = SFT >> few shot (if you only care about error rate)

PRM = ORM > final answer (if you care about trace error)

Human

P]
COMIE Supervised
Problems and e .
EOilAnSwers "/ Finetuned Model \\
| &

| \

|
/ \
\\
fouwsonot > Solution Samples Reward Model
Prompting ‘/‘ -
\ | \o if
| \i
| | \/
| ><
| | ,/
\ | [\ @
\.| RLModelfom | / GEMEK
Expert Ilteration
\

Reranking /
with Reward Model

Base
Language Model

Problems and
Final Answers

i\
/ N Filtered Samples
(Fig. 2)

|

\ /
\i:/
V

A\
/i

\

Maijority Voting g [
Decoding \ 7 Data Annotation
\ /
\ /€)

Final Answer Error

> Trace Error

} Input Dataset

Trained Model
Prompting
Generated Samples

Decoding Strategy

00

| Human Annotation

Output Metric

Figure 1 | Method Overview. This schematic provides an overview of the various modeling and
training components considered and how they fit together. Some details (covered in the text) are

omitted for readability.

3.1

Error rate (%)

33

Approach Base model Trace Final-answer

Few-shot (Wang et al., 2022; Wei et al., 2022) PaLM-540B 14.0 25.6
Few-shot (Lewkowycz et al., 2022) Minerva-540B - 21.5
Few-shot+Final-Answer RL (Zelikman, 2022) GPT-J-6B - 89.3
Few-shot, ORM reranking (Li et al., 2022) Codex-175B - 16.8
Zero-shot (Kojima et al., 2022) InstructGPT-175B - 59.3
SFT, ORM reranking (Cobbe et al., 2021) GPT-175B - 45.0
Few-shot, Majority Voting Our Base-70B - 41.5
Few-shot+Final-Answer RL, Majority Voting =~ Our Base-70B 19.8 (7.9-31.7) 23.5
SFT+Final-Answer RL, Majority Voting Our Base-70B 12.1 (4.6-19.6) 20.2
SFT, Majority Voting Our Base-70B 11.4 (4.8-18.0) 22.3
Few-shot, ORM reranking Our Base-70B - 27.8
Few-shot+Final-Answer RL, ORM reranking Our Base-70B 12.4 (2.1-22.8) 16.6
SFT+Final-Answer RL, ORM reranking Our Base-70B 3.7 (0.5-6.9) 14.2
SFT, ORM reranking Our Base-70B 4.4 (0.6-8.3) 14.8
SFT, PRM reranking Our Base-70B 3.5 (0.5-6.5) 14.1
Few-shot+ORM-RL, ORM reranking Our Base-70B 5.5 (2.6-8.4) 13.8
SFT+ORM-RL, ORM reranking Our Base-70B 3.4 (0.0-6.8) 12.7
SFT+PRM-RL, PRM reranking Our Base-70B 3.8 (0.5-7.1) 12.9

Preliminary

Dataset: GSM8k
Metric: error rate, trace error rate (correct answer & incorrect reasoning)
Method:

Few shot / SFT

Reward model: ORM or PRM

RL: supervised via expert iteration (policy improvement + distillation)

SFT

2.3. Supervised finetuning

In supervised finetuning (SFT), we finetune an LM to maximize the log-likelihood of a sequence of
target tokens, given a sequence of input tokens. In our paper, we use SFT as a process-based approach
by taking the reasoning traces provided in the GSM8K dataset as the target tokens (as opposed to the
outcome-based approach of using only the final answer as the target), with the problem statement as
the input tokens.

Training details We finetune using AdamW (Loshchilov and Hutter, 2017) with a learning rate
of 2 x 107 and a batch size of 256. We stop finetuning once the language modeling loss begins to
increase on the validation set. For our SFT model, this happens after 70 steps, amounting to slightly
more than 2 training set epochs.

Reward model

2.4. Reward models

We evaluate two main approaches to training reward models (RMs) (Christiano et al., 2017; Ziegler
et al., 2019; Menick et al., 2022), also known as verifiers (Cobbe et al., 2021). In both approaches,
we implement the RM as a LM, trained to predict a binary label as either a ‘correct’ or ‘incorrect’ token
after each step. In the outcome-supervised RM (ORM), the binary label for each step indicates whether
the resulting final answer of that full sample matched the reference final answer, as proposed by Cobbe
et al. (2021). A policy which maximizes the ORM score at each step thus maximizes the RM-estimated
probability at each step of eventually reaching the correct final answer. For the process-supervised RM
(PRM), the binary label after each step indicates whether the steps so far are correct. Because we lack
reliable programmatic means for determining the correctness of intermediate steps, we use human
annotations for these labels, as described in Section 2.7. A policy which maximizes the PRM score
thus selects each step to maximize the RM-estimated probability of the steps so far being correct. If
the steps so far are correct, this typically means such a policy minimizes the probability of introducing
a mistake on the current step. As reported in Section 3.2, we find this outperforms the approach from
Li et al. (2022), which is similar to our PRM but replaces human evaluations with a heuristic based
on string matching the results of the intermediate calculations.

Decoding

Best of N sampling (with reward model) or majority vote

We use two approaches to select the best sample. When no RM is available, we use majority
voting. For this, we first select the most common final answer from the K samples, then select a
random sample from among those yielding this selected final answer. This is called self-consistency
by Wang et al. (2022), and is similar to more general techniques like Minimum Bayes Risk decoding
(Kumar and Byrne, 2004). Otherwise, we use RM-weighted decoding, also called verifier-voting by Li
et al. (2022). Here, we weight each sample according to the RM-estimated correctness probability;
select the final answer with the largest total weight, and then select the sample with the highest
RM score from those yielding the selected final answer. More formally, we select the final answer
f* = argmax; ¥ final ans(y)=-f 'M_Prob(y;), where yi, ..., yx are the model samples, then select the

RL

final Answer RL § }]F[ull Solution Sa;n.p.léul i $Answer > i Flltlen[ed Full Solutlon] .San"l‘p[les i [:] —
S:x:,:(,s () Joe) [n [| Generated Samples
L b |) (Jor) |y, e) (-4)
ORM-RL (Full Solution Samples) ORM Score (Filtered Full Solution Sample) Final Answer
L] (J oo) |05 [] solution Step
GSM8K
Problems () (Jorred {)i 15 > () o {] Selected Sample
)) (—) o2
PRM-RL (Full Solution Samples] (Filtered Full Solution Sample)
PRM Score PRM Score PRM Score
- (== () [os)))|)
il 3 C— |7 oo (N 05
] a1 1 o1

Main result 1: Error rate

Supervising final-answer correctness alone suffices for low final-answer error rate. The SFT
and Few-shot+Final-Answer RL models attain similar final-answer error rates both without an RM
(22.3% vs. 23.5%) and with an ORM (14.8% vs. 16.6%). This is notable, as Few-shot+Final-Answer
RL only requires demonstrators to provide a final answer, rather than a full reasoning trace. Put
another way, Few-shot+Final-Answer RL uses 1-4 tokens of label supervision per question, while SFT
uses hundreds. This suggests that in cases where final-answer correctness is sufficient, outcome-based
approaches can provide a label-efficient approach with competitive performance.

Main result 2: process reward

ORM-supervised reward models approximate PRM labels. Despite the fact that ORMs are only
trained to predict whether the final answer is correct, we can see in Fig. 4 that ORM predictions tend
to agree more with the PRM labels than with the ORM labels themselves (85% vs. 77% averaged over
all steps).! We suspect this is because it is simpler for the ORM to learn to recognize when steps are
correct, than it is to check the answer by internally computing the final answer itself. This is further
supported by that fact that, even though trace error is measured only on samples with the correct
final answer, RM reranking significantly improves trace error relative to SFT alone (4.4% vs. 11.4%).
This suggests that RMs are checking the reasoning steps, and not just the final answers. However, we

. il O ol . s AN 31 Lt s s _mmaAar1_1L 1. __ ___ 1L _

R S S L It B et [

Main result 3: trace error

Low trace error requires either process-based feedback or a reward model that emulates it
Fig. 3 shows that despite similar final-answer error rates, there is a significantly higher trace error
rate for the outcome-based Few-shot+Final-Answer RL vs. the process-based SFT model (19.8%
vs. 11.4%). This discrepancy persists with RM reranking: Few-shot+Final-Answer RL with ORM
reranking underperforms SFT with ORM/PRM reranking (12.4% vs. 4.4%/3.5%). However, we find
that when we train the few-shot RL model using an ORM (Few-shot+ORM-RL) rather than training
directly against final-answer correctness, the trace error drops significantly from 12.4% to 5.5%
closing much of this gap. We believe this results from the previous finding, i.e. that the ORM is
basically learning to emulate the PRM allowing the model to learn from emulated process-based

LET’S VERIFY STEP BY STEP

Hunter Lightman*, Vineet Kosaraju*, Yura Burda*, Harri Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever & Karl Cobbe*

OpenAl

San Francisco, CA, USA

karl@openai.com

Summary

PRM out-performs ORM over MATH dataset, at large scale (large annotation) with
more capable base model

Despite these advantages, Uesato et al. (2022) found that outcome supervision and process super-
vision led to similar final performance in the domain of grade school math. We conduct our own
detailed comparison of outcome and process supervision, with three main differences: we use a
more capable base model, we use significantly more human feedback, and we train and test on the
more challenging MATH dataset (Hendrycks et al., 2021).

Two scales

Large scale: Use human annotation data

ORM | PRM | Majority Voting
% Solved (Best-of-1860) | 72.4 | 78.2 69.6
78
761
z
u‘?— 744
g
2 724
o
o
=
2 704
0w
£
2 68
2
<
a
X 66
64 ——— Process-Supervised RM
—— Outcome-Supervised RM
62 —— Majority Voting
10t 10? 10°

N = number of solutions per problem

% Problems Solved (Best-of-500)
w w » » w w (=)
o w o v o w o

N
o

PRM + Active Learning
—— PRM (PRM,ge Supervised)
—— ORM (PRMzge Supervised)
—— ORM (final-answer supervised)

10° 10! 10?
Number of solutions labelled per problem

(a) Four series of reward models trained using dif-
ferent data collection strategies, compared across
training sets of varying sizes.

o
o o u o

o

o

PRM (PRM g Supervised)
ORM (PRM,/ge Supervised)
—— ORM (final-answer supervised)

% Problems Solved (Best-of-N)
N w w g » w w

v

N
o

10° 10! 10? 103
N = number of solutions per problem

(b) Three reward models trained on 200 sam-
ples/problem using different forms of supervision,
compared across many test-time compute bud-
gets.

Small scale: Use PRM_{large} as annotation, oblation study

Data annotation

During data collection, we must decide which solutions to surface to data-labelers. The most
straightforward strategy is to uniformly surface solutions produced by the generator. However, if
we surface solutions that make obvious errors, the human feedback we get is less valuable. We
would prefer to surface solutions that are more likely to fool our best reward model. To that end,
we attempt to strategically select which solutions to show data-labelers. Specifically, we choose to
surface convincing wrong-answer solutions. We use the term convincing to refer to solutions that are
rated highly by our current best PRM, and we use wrong-answer to refer to solutions that reach an
incorrect final answer. We use this slightly verbose phrasing to emphasize the fact that correctness
is determined solely by checking the final answer, a process which occasionally leads to misgraded
solutions. We expect to gain more information from labeling convincing wrong-answer solutions,
since we know the PRM is mistaken about at least one step in each such solution.

When we provide process supervision, we deliberately choose to supervise only up to the first in-
correct step. This makes the comparison between outcome and process supervision more straight-
forward. For correct solutions, both methods provide the same information, namely that every step
is correct. For incorrect solutions, both methods reveal the existence of at least one mistake, and
process supervision additionally reveals the precise location of that mistake. If we were to provide
additional process supervision beyond the first mistake, then process supervision would have an even
greater information advantage. This decision also keeps the labelling cost similar for humans: with-
out relying on an easy-to-check final answer, determining the correctness of a solution is equivalent
to identifying its first mistake. While most MATH problems do have easy-to-check final answers,
we expect this to not remain true in more complex domains.

ORM vs. PRM

2.5 OUTCOME-SUPERVISED REWARD MODELS (ORMS)

We train ORMs following a similar methodology to Cobbe et al. (2021). We uniformly sample a
fixed number of solutions per problem from the generator, and we train the ORM to predict whether
each solution is correct or incorrect. In practice, we usually determine correctness by automatically
checking the final answer, but in principle these labels could be provided by humans. At test time,
we use the ORM’s prediction at the final token as the overall score for the solution. We note the
automatic grading used to determine ORM targets is not perfectly reliable: false positives solutions
that reach the correct answer with incorrect reasoning will be misgraded. We discuss additional
ORM training details in Appendix E!

2.6 PROCESS-SUPERVISED REWARD MODELS (PRMS)

We train PRMs to predict the correctness of each step after the last token in each step. This prediction
takes the form of a single token, and we maximize the log-likelihood of these target tokens during
training. The PRM can therefore be trained in a standard language model pipeline without any
special accommodations. To determine the step-level predictions at test time, it suffices to perform
a single PRM forward pass over the whole solution. We visualize large-scale PRM scores for two
different solutions in Figure 2| To compare multiple solutions, it is necessary to compute a single
score for each solution. This is an important but straightforward detail: we define the PRM score for
a solution to be the probability that every step is correct under the PRM. We implement this as the
product of the correctness probabilities for each step. We describe other possible scoring strategies
and additional PRM training details in Appendix F,

Large scale supervision

ORM | PRM | Majority Voting
% Solved (Best-of-1860) | 72.4 | 78.2 69.6

78 1

724

70 A

% Problems Solved (Best-of-N)

64 ~——— Process-Supervised RM
—— Outcome-Supervised RM
62 4 —— Majority Voting
10t 102 103

N = number of solutions per problem

Figure 3: A comparison of outcome-supervised and process-supervised reward models, evaluated
by their ability to search over many test solutions. Majority voting is shown as a strong baseline. For
N < 1000, we visualize the variance across many subsamples of the 1860 solutions we generated
in total per problem.

Small scale synthetic supervision

o))
o

(€]
o

% Problems Solved (Best-of-500)

wu
]
L

"

»
w

D
o

w
%]
N

w
o

N
w
1

PRM + Active Learning
—— PRM (PRM;.¢e Supervised)
—— ORM (PRMjz/ge supervised)
—— ORM (final-answer supervised)

10° 10! 102
Number of solutions labelled per problem

% Problems Solved (Best-of-N)
)]
o

N W W b b U WU
o

N
o

v o u

u o un

—— PRM (PRM;.ge supervised)
—— ORM (PRMj4/ge supervised)
—— ORM (final-answer supervised)

10°

10! 102 103
N = number of solutions per problem

(a) Four series of reward models trained using dif-
ferent data collection strategies, compared across

training sets of varying sizes.

(b) Three reward models trained on 200 sam-
ples/problem using different forms of supervision,
compared across many test-time compute bud-
gets.

Figure 4: A comparison of different forms of outcome and process supervision. Mean and standard
deviation is shown across three seeds.

