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High-level summary

There are a lot of design choices when training large language models (LLMs)
Because LLMs are by nature “large,” it's impossible to explore the design space

This work studies how, for a fixed compute budget, how to vary the and the

They take three approaches to this question. The main conclusions are:
1. Many models are oversized
2. Models can be smaller and instead trained on more data
3. For a fixed compute budget, model size and # training tokens should scale equally

They demonstrate the importance of these insights by training a new model Chinchilla that
outperforms previous (larger) models across various benchmarks



Large language models (in 2022)

Largest LLMs models were 500 billion parameters (now, ~1 trillion)

Typically trained on ~300 billion tokens

Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion

Chinchilla 70 Billion 1.4 Trillion




Large language models (in 2022)

Compute cost for training is LARGE and prohibits training lots of models (i.e., prevents
exploration of the full design space). Typically, can only train 1 LLM.

Kaplan et al. (2020): Power law relationship between model size and performance
This caused many to continually increase model size

This paper finds that one can achieve same (or better) performance with smaller
models and more training data!



Problem statement

N = model size
D = number of training tokens
C = compute budget

L(N, D) is pre-training loss given N and D ~ 6ND

/

Question: Give a compute (FLOPs) budget C, what are the optimal values for the model size N

and number of training tokens D?



High-level approach

Trained >400 models
Varied model size from 700M to 16B Important: tuned hyperparameters

Varied number of tokens from 5B to 400B

based on # data

Took 3 different approaches to estimating loss L(V, D):
1. Fix model size N and vary number of training tokens D

2. For fixed FLOP counts, vary the model size N

3. Fit a parametric loss function



Approach 1: Fix model size and vary # training tokens

Foreach N

For each D from 1x to 16x

Train over 4 different training sequences

This produces a curve of the training loss as a function of training tokens (for a given /V)

Smooth & interpolate training loss curve



Training loss curves for every N Using left plot, for each Since NN implicitly defines a

(each in different colors) FLOPs value, find the N D for a given FLOPs size,
as # training tokens D increases (color) with the lowest loss we can generate the
(indicated by FLOPS) analogous plot for D
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Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 10%3).



Approach 2: Vary model size for fixed FLOPs

For a given FLOP budget C (from 6e18 to 3e12),
For different model sizes N
Train on the number of tokens that would give you C total compute

This gives a curve of the loss as a function of NV (under a given C)



For each FLOPs

value, determine N
with minimal loss

final loss curves for different C
(each in different colors)

as model size N increases
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens

for an optimal model trained with the compute budget of Gopher.



Approach 3: Fit parametric loss function

Using experiments from Approaches 1 and 2 (no new experiments in Approach 3)...

Fit the following parametric function:

A B i
r A _gap due to limited
L(N: D) = £+ N« T Dﬂ amt of training data
entropy of natural text \

gap due to limited
number of parameters



Approach 3: Fit parametric loss function

Using experiments from Approaches 1 and 2 (no new experiments in Approach 3)...

Fit the following parametric function:

A B

4 A _gap due to limited
L(N: D) = £+ W T ﬁ amt of training data

entropy of natural text \

wikipedia.com

gap due to limited
number of parameters

Minimize Huber | Ls(a) % 2 for |a] < 0,
INIMIZe Auper 10SS: —
o 0 (la] — %5) , otherwise.

Huber loss (green, 4 = 1) and squared &
error loss (blue) as a function of y — f(x)



blue line gives optimal loss for given FLOPs curves give fixed compute a=0.46
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Figure 4 | Parametric fit. We fit a parametric modelling of the loss L(N, D) and display contour (left)
and i1soFLOP slices (right). For each isoFLOP slice, we include a corresponding dashed line in the left
plot. In the left plot, we show the efficient frontier in blue, which is a line in log-log space. Specifically,
the curve goes through each iso-loss contour at the point with the fewest FLOPs. We project the
optimal model size given the Gopher FLOP budget to be 40B parameters.



Implications

Approach Coeff. a where N,,, « C* Coeff. b where D, « C°
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501, 0.512)
2. IsoFLOP profiles 0.49 (0.462, 0.534) 0.51 (0.483, 0.529)
3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

These results suggest that model size and # of training tokens should scale ~equally

Third approach suggests that # of training tokens is more important than model size

Suggests current (in 2022) models are oversized and that dataset collection is important



Chinchilla: Design

Used this analysis to construct a new model: Chinchilla
Same number of FLOPs as Gopher but smaller in model size

Details: (i) trained on Massivelext, (ii)) uses AdamW rather than Adam, (iii) modified
SentencePiece tokenizer w/ no NFKC normalization, (iv) bfloat16 for forward/backward
passes and float32 for distributed optimizer state

Model Layers Number Heads Key/Value Size d,.qe MaxLR Batch Size
Gopher 280B 80 128 128 16,384 4x10> 3M — 6M
Chinchilla 70B 80 64 128 8192 1x10™% 1.5M — 3M

Table 4 | Chinchilla architecture details. We list the number of layers, the key/value size, the
bottleneck activation size d 401, the maximum learning rate, and the training batch size (# tokens).
The feed-forward size is always set to 4 x d,,,,q.|. Note that we double the batch size midway through
training for both Chinchilla and Gopher.



Chinchilla: Motivation

Compared to Gopher, can reduce model size by 4x and increase training by 4x

Chinchilla trained on 1.4 trillion tokens

Why is this good? Smaller model size implies...
« Cheaper to runinference

« Cheaper to fine-tune

« Can be deployed on smaller hardware downstream



Chinchilla: Results

Evaluated on many tasks, including Language Modeling, Reading Comprehension, QA,
MMLU, BIG-bench, Common Sense tasks

Compared to Gopher, sometimes to GPT-3.5, humans, MT-NLG 5308B
TL;DR Chinchilla outperforms all, except
Human experts on MMLU
MT-NLG 530B on Common Sense
Considered toxicity and bias

Chinchilla resolves pronouns better than Gopher, no difference in toxicity



Discussion: data-dependence

We show scaling results from an IsoFLOP (Approach 2) analysis after training on two different datasets:
C4 (Raffel et al., 2020b) and GitHub code (we show results with data from Rae et al. (2021)), results
are shown in Table A2. For both set of experiments using subsets of MassiveText, we use the same
tokenizer as the MassiveText experiments.

We find that the scaling behaviour on these datasets is very similar to what we found on MassiveText,
as shown in Figure A2 and Table A2. This suggests that our results are independent of the dataset as
long as one does not train for more than one epoch.

Approach Coef. a where N, o< C* Coef. b where D, « C°
C4 0.50 0.50
GitHub 0.53 0.47
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Figure 3: Beating power law scaling in practice. A-D: Curves of test error against pruned dataset
size in 4 settings. Pruning scores were EL2N [10] for CIFAR-10 and SVHN and memorization [ 13]
for ImageNet. See App. B for all pruning/training details and App. D for similar ImageNet plots
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that for SVHN in B an asymptotic constant error £(P — 0o) = 1.1% is subtracted from each of the
curves to visualize the power law scaling more clearly.)
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Discussion: Choice of power law

Expected forms of the loss terms. In the decomposition (9), the second term depends entirely on
the number of parameters N that defines the size of the functional approximation space. On the set
of two-layer neural networks, it is expected to be proportional to ﬁ (Siegel and Xu, 2020). Finally,
given that it corresponds to early stopping in stochastic first order methods, the third term should

scale as the convergence rate of these methods, which is lower-bounded by D+, (Robbins and Monro,

1951) (and may attain the bound). This convergence rate is expected to be dimension free (see e.g.

Bubeck, 2015, for a review) and depends only on the loss smoothness; hence we assume that the
second term only depends on D in (2). Empirically, we find after fitting (2) that

A B

L(N,D)=E+ +

N0.34 DO.28 . (10)

with E = 1.69, A = 406.4, B = 410.7. We note that the parameter/data coefficients are both lower

than %; this is expected for the data-efficiency coefficient (but far from the known lower-bound).

Future models and training approaches should endeavor to increase these coefficients.

4.1 Proposed L(N, D) Equation

We have chosen the parameterization (1.5) (repeated here for convenience):
NN+s D]
N D

1. Changes 1n vocabulary size or tokenization are expected Lo rescale the loss by an overall lactor. The
parameterization of L(V, D) (and all models of the loss) must naturally allow for such a rescaling,

2. Fixing D and sending N — o¢, the overall loss should approach L(D). Conversely, fixing N and
sending D — oo the loss must approach L(N).

3. L(N, D) should be analytic at D — 2c, so that it has a series expansion in 1/D with integer powers.
Theoretical support for this principle is significantly weaker than for the first two.

L(N,D) = 4.1)

using three principles:

Training loss
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Discussion: Adding flexibility

More realistic models of data addition?

The Data Addition Dilemma: How do we scale training data
from multiple sources while minimizing distribution shift?
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Discussion: Other questions

« FLOP counting with large context length?

« Small errors have big implications—what is the right notion of “robustness” here?
« What is the “right” (a) functional form and (b) set of parameters?

« Theoretical explanations—can we do better than random features?

« Scaling laws that incorporate test-time computation?



