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High-level summary
There are a lot of design choices when training large language models (LLMs) 

Because LLMs are by nature “large,” it’s impossible to explore the design space 

This work studies how, for a fixed compute budget, how to vary the model size and the 
number of training tokens 

They take three approaches to this question. The main conclusions are: 
1. Many models are oversized 
2. Models can be smaller and instead trained on more data 
3. For a fixed compute budget, model size and # training tokens should scale equally 

They demonstrate the importance of these insights by training a new model Chinchilla that 
outperforms previous (larger) models across various benchmarks



Large language models (in 2022)

Largest LLMs models were 500 billion parameters (now, ~1 trillion) 

Typically trained on ~300 billion tokens 



Large language models (in 2022)

Largest LLMs models were 500 billion parameters (now, ~1 trillion) 

Typically trained on ~300 billion tokens 

Compute cost for training is LARGE and prohibits training lots of models (i.e., prevents 
exploration of the full design space). Typically, can only train 1 LLM.  

Kaplan et al. (2020): Power law relationship between model size and performance  

This caused many to continually increase model size 

This paper finds that one can achieve same (or better) performance with smaller 
models and more training data!



Problem statement

 = model size 

 = number of training tokens 

 = compute budget 

 is pre-training loss given  and  

Question: Give a compute (FLOPs) budget , what are the optimal values for the model size  
and number of training tokens ?  
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High-level approach
Trained >400 models 
Varied model size from 700M to 16B 
Varied number of tokens from 5B to 400B 

Took 3 different approaches to estimating loss : 

1. Fix model size  and vary number of training tokens  

2. For fixed FLOP counts, vary the model size  
3. Fit a parametric loss function 

(All three yielded similar results)
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Approach 1: Fix model size and vary # training tokens

For each   

For each  from 1x to 16x 

Train over 4 different training sequences 

This produces a curve of the training loss as a function of training tokens (for a given ) 

Smooth & interpolate training loss curve 

(Next slide gives visual intuition) 

Note: FLOPs can be computed from  and , 
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Training loss curves for every  
(each in different colors) 


as # training tokens  increases 
(indicated by FLOPs)
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Using left plot, for each 
FLOPs value, find the  

(color) with the lowest loss
N

Since  implicitly defines a 
 for a given FLOPs size, 
we can generate the 
analogous plot for  
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a = 0.50

fit power law

b = 0.50 



Approach 2: Vary model size for fixed FLOPs

For a given FLOP budget  (from 6e18 to 3e12),  

For different model sizes  

Train on the number of tokens that would give you  total compute 

This gives a curve of the loss as a function of  (under a given ) 

(See next slide)
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final loss curves for different  
(each in different colors) 


as model size  increases

C

N

For each FLOPs 
value, determine  
with minimal loss
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Since  implicitly defines a 

 for a given , generate 
analogous plot for  
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fit power law

a = 0.49

fit parabolas fit power law

b = 0.51 



Approach 3: Fit parametric loss function

Using experiments from Approaches 1 and 2 (no new experiments in Approach 3)…  

Fit the following parametric function:

entropy of natural text 

(loss for ideal generative process) 

gap due to limited 

number of parameters 


gap due to limited 

amt of training data 



Approach 3: Fit parametric loss function

Using experiments from Approaches 1 and 2 (no new experiments in Approach 3)…  

Fit the following parametric function: 

Minimize Huber loss: 

entropy of natural text 

(loss for ideal generative process) 

gap due to limited 

number of parameters 


gap due to limited 

amt of training data 

wikipedia.com



curves give fixed compute blue line gives optimal loss for given FLOPs a = 0.46 
b = 0.54



Implications

These results suggest that model size and # of training tokens should scale ~equally  

Third approach suggests that # of training tokens is more important than model size 

Suggests current (in 2022) models are oversized and that dataset collection is important



Chinchilla: Design

Used this analysis to construct a new model: Chinchilla 

Same number of FLOPs as Gopher but smaller in model size 

Details: (i) trained on MassiveText, (ii) uses AdamW rather than Adam, (iii) modified 
SentencePiece tokenizer w/ no NFKC normalization, (iv) bfloat16 for forward/backward 
passes and float32 for distributed optimizer state



Chinchilla: Motivation

Compared to Gopher, can reduce model size by 4x and increase training by 4x 

Chinchilla trained on 1.4 trillion tokens 

Why is this good? Smaller model size implies… 

• Cheaper to run inference 

• Cheaper to fine-tune 

• Can be deployed on smaller hardware downstream



Chinchilla: Results

Evaluated on many tasks, including Language Modeling, Reading Comprehension, QA, 
MMLU, BIG-bench, Common Sense tasks 

Compared to Gopher, sometimes to GPT-3.5, humans, MT-NLG 530B 

TL;DR Chinchilla outperforms all, except 

Human experts on MMLU 

MT-NLG 530B on Common Sense 

Considered toxicity and bias 

Chinchilla resolves pronouns better than Gopher, no difference in toxicity



Discussion: data-dependence

(Goyal et al., 2024)

(Sorscher et al., 2022)



Discussion: Choice of power law



Discussion: Adding flexibility

More realistic models of data addition?

(Shen et al., 2024) (Ruan et al., 2024)

Observational data?



Discussion: Other questions

• FLOP counting with large context length? 

• Small errors have big implications—what is the right notion of “robustness" here? 

• What is the “right” (a) functional form and (b) set of parameters? 

• Theoretical explanations—can we do better than random features? 

• Scaling laws that incorporate test-time computation?


