
REFORM Reading Group | October 23, 2024

Training Compute-Optimal
Large Language Models
Hoffman, Borgeaud, Mensch, Sifre, et al. | DeepMind | March 2022

High-level summary
There are a lot of design choices when training large language models (LLMs)

Because LLMs are by nature “large,” it’s impossible to explore the design space

This work studies how, for a fixed compute budget, how to vary the model size and the
number of training tokens

They take three approaches to this question. The main conclusions are:
1. Many models are oversized
2. Models can be smaller and instead trained on more data
3. For a fixed compute budget, model size and # training tokens should scale equally

They demonstrate the importance of these insights by training a new model Chinchilla that
outperforms previous (larger) models across various benchmarks

Large language models (in 2022)

Largest LLMs models were 500 billion parameters (now, ~1 trillion)

Typically trained on ~300 billion tokens

Large language models (in 2022)

Largest LLMs models were 500 billion parameters (now, ~1 trillion)

Typically trained on ~300 billion tokens

Compute cost for training is LARGE and prohibits training lots of models (i.e., prevents
exploration of the full design space). Typically, can only train 1 LLM.

Kaplan et al. (2020): Power law relationship between model size and performance

This caused many to continually increase model size

This paper finds that one can achieve same (or better) performance with smaller
models and more training data!

Problem statement

 = model size

 = number of training tokens

 = compute budget

 is pre-training loss given and

Question: Give a compute (FLOPs) budget , what are the optimal values for the model size
and number of training tokens ?

N

D

C

L(N, D) N D

C N
D

≈ 6ND

High-level approach
Trained >400 models
Varied model size from 700M to 16B
Varied number of tokens from 5B to 400B

Took 3 different approaches to estimating loss :

1. Fix model size and vary number of training tokens

2. For fixed FLOP counts, vary the model size
3. Fit a parametric loss function

(All three yielded similar results)

L(N, D)
N D

N

Important: tuned hyperparameters
based on # data

Approach 1: Fix model size and vary # training tokens

For each

For each from 1x to 16x

Train over 4 different training sequences

This produces a curve of the training loss as a function of training tokens (for a given)

Smooth & interpolate training loss curve

(Next slide gives visual intuition)

Note: FLOPs can be computed from and ,

N

D

N

N D ≈ 6ND

Training loss curves for every
(each in different colors)

as # training tokens increases
(indicated by FLOPs)

N

D

Using left plot, for each
FLOPs value, find the

(color) with the lowest loss
N

Since implicitly defines a
 for a given FLOPs size,
we can generate the
analogous plot for

N
D

D

fit power law

a = 0.50

fit power law

b = 0.50

Approach 2: Vary model size for fixed FLOPs

For a given FLOP budget (from 6e18 to 3e12),

For different model sizes

Train on the number of tokens that would give you total compute

This gives a curve of the loss as a function of (under a given)

(See next slide)

C

N

C

N C

final loss curves for different
(each in different colors)

as model size increases

C

N

For each FLOPs
value, determine
with minimal loss

N
Since implicitly defines a

 for a given , generate
analogous plot for

N
D C

D

fit power law

a = 0.49

fit parabolas fit power law

b = 0.51

Approach 3: Fit parametric loss function

Using experiments from Approaches 1 and 2 (no new experiments in Approach 3)…

Fit the following parametric function:

entropy of natural text

(loss for ideal generative process)

gap due to limited

number of parameters

gap due to limited

amt of training data

Approach 3: Fit parametric loss function

Using experiments from Approaches 1 and 2 (no new experiments in Approach 3)…

Fit the following parametric function:

Minimize Huber loss:

entropy of natural text

(loss for ideal generative process)

gap due to limited

number of parameters

gap due to limited

amt of training data

wikipedia.com

curves give fixed compute blue line gives optimal loss for given FLOPs a = 0.46 
b = 0.54

Implications

These results suggest that model size and # of training tokens should scale ~equally

Third approach suggests that # of training tokens is more important than model size

Suggests current (in 2022) models are oversized and that dataset collection is important

Chinchilla: Design

Used this analysis to construct a new model: Chinchilla

Same number of FLOPs as Gopher but smaller in model size

Details: (i) trained on MassiveText, (ii) uses AdamW rather than Adam, (iii) modified
SentencePiece tokenizer w/ no NFKC normalization, (iv) bfloat16 for forward/backward
passes and float32 for distributed optimizer state

Chinchilla: Motivation

Compared to Gopher, can reduce model size by 4x and increase training by 4x

Chinchilla trained on 1.4 trillion tokens

Why is this good? Smaller model size implies…

• Cheaper to run inference

• Cheaper to fine-tune

• Can be deployed on smaller hardware downstream

Chinchilla: Results

Evaluated on many tasks, including Language Modeling, Reading Comprehension, QA,
MMLU, BIG-bench, Common Sense tasks

Compared to Gopher, sometimes to GPT-3.5, humans, MT-NLG 530B

TL;DR Chinchilla outperforms all, except

Human experts on MMLU

MT-NLG 530B on Common Sense

Considered toxicity and bias

Chinchilla resolves pronouns better than Gopher, no difference in toxicity

Discussion: data-dependence

(Goyal et al., 2024)

(Sorscher et al., 2022)

Discussion: Choice of power law

Discussion: Adding flexibility

More realistic models of data addition?

(Shen et al., 2024) (Ruan et al., 2024)

Observational data?

Discussion: Other questions

• FLOP counting with large context length?

• Small errors have big implications—what is the right notion of “robustness" here?

• What is the “right” (a) functional form and (b) set of parameters?

• Theoretical explanations—can we do better than random features?

• Scaling laws that incorporate test-time computation?

