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Agenda

● Today’s focus: How much data and supervision do we need to 

post-trained behaviors like reasoning and instruction following?
○ Part I: efficient finetuning for reasoning (s1)

○ Part II:  “instruction following without instruction tuning”



s1: Simple test-time scaling
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Test time scaling

● The idea of spending more compute in the inference time to get a better performance

○ Large Language Monkeys: Scaling Inference Compute with Repeated Sampling (Brown et al.)
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● Can we have a simple approach for enabling test-time scaling? 
○ Training a model using supervised fine-tuning (SFT), and not RL training

○ Having a nub for controlling the test-time compute

● The first one should unlock the reasoning capabilities of the model, and the second one should give us 

a control over the amount of thinking that the model performs.
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Dataset Curation 

● For SFT dataset
○ To keep things simple, we only want to have 1000 samples of data points

■ Reasoning traces of a thinking model

● How to actually choose these data points?
○ Three main criteria

■ Quality: e.g. no poor formatting

■ Difficulty: Challenging and require reasoning effort

■ Diversity: from various fields to cover different reasoning tasks



Dataset Curation 

1. Combining the reasoning traces of Google Gemini Flash Thinking on different sources
a. 30,660 NuminaMath + AIME + 4,250 OlympicArena (Various Olympiads) + 4,238 OmniMath + 2,385 AGIEval

b. Getting the traces of the model yielding 59K triplets of (question, generated reasoning trace, generated solution)
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1. Combining the reasoning traces of Google Gemini Flash Thinking on different sources
a. 30,660 NuminaMath + AIME + 4,250 OlympicArena (Various Olympiads) + 4,238 OmniMath + 2,385 AGIEval

b. Getting the traces of the model yielding 59K triplets of (question, generated reasoning trace, generated solution)

2. Three stages of filtering
a. Quality: removing those with API errors or formatting issues, resulting in ~51K

b. Difficulty: filtering if one of Qwen2.5 models could solve it or very short reasoning ~25K

c. Diversity: choosing a domain uniformly at random, picking one of the problems favoring longer reasoning traces ~1K
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● Dataset s1K with 1,000 high-quality, diversem, and difficult questions with reasoning traces.
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● Dataset s1K with 1,000 high-quality, diversem, and difficult questions with reasoning traces.

Fine Tune on 

it!
Qwen2.5-32B
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● Two different paradigms
○ Parallel: independent sampling (LLMonkeys)

○ Sequential: later computations depend on earlier one

■ Intuitively, this should scale better as the later computations builds on intermediate results



Test Time Scaling

● Two different paradigms
○ Parallel: independent sampling (LLMonkeys)

○ Sequential: later computations depend on earlier one

■ Intuitively, this should scale better as the later computations builds on intermediate results

● Budget Forcing
○ Fixed number of tokens per thinking

○ How to control?

■ If more, then truncate

■ If less, then replace the end-of-thinking token with “Wait”

● This forces the model to continue rethinking its answer. 
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Results

● Comparison with other models



Results

● s1K data ablations
○ Reported with 95% paired bootstrap

● Only quality: no difficulty or diversity of domains

● Only diversity: randomly from domains

● Only difficulty: longest reasoning traces



Results

● Budget forcing extrapolation ablations



Discussion

● Fine-tuning on a small but high-quality data would be more effective than fine-tuning on a large 

low-quality data.

● The fact that we can enable reasoning only with 1K examples, suggests that the pre-trained model already 

is capable of reasoning and we just have to elicit it. 
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Part II: What’s the minimal intervention we can do 
on a base model to get instruction-following?



How much SFT do we need for instruction following?

● Alpaca: 52k instructions
● “Less is More for Alignment (LIMA)” (Zhou et al. ‘23)

○ “Superficial Alignment Hypothesis: A model’s knowledge and capabilities are learnt almost 
entirely during pretraining, while alignment teaches it which subdistribution of formats should 
be used when interacting with users”

○ 1k instructions selected from: StackExchange, wikiHow, r/AskRedit
○ LLaMa 65B finetuned on 1k



How much SFT do we need for instruction following?

● Alpaca: 52k instructions
● “Less is More for Alignment (LIMA)” (Zhou et al. ‘23)

Key: diversity and output quality



Wait, do we even need SFT…?

● Are we really teaching the model to follow instructions, or does it already have 
this behavior and we’re “eliciting” during post-training?



Q1: Do responses suffice?

?
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Why is response tuning enough?

● Success of response tuning suggests we don’t need to teach models explicit 
mapping from instructions to responses

● Hypothesis:
○ Based models can rank a desired response for an instruction higher than a desired 

response for another instruction, but scores a string that is not a desired response at all 
higher than both



Why is response tuning enough?
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Q3: Can we induce instruction following with simple rules

● Intuition thus far: difference between a pretrained model’s distribution and a 
corresponding instruction-following distribution is “simple”

● Lin et al. (2024): 77.7% of token decisions don’t change 
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Q3: Can we induce instruction following with simple rules



Notes

● Isn’t it likely that the “base” models have already seen instruction data?
○ Llama-2-7B: no guarantee against intentional instruction tuning
○ OLMo-7B: no instruction-tuning data was intentionally included in its pretraining
○ Similar conclusions from both

● Isn’t semantics of instruction following already encoded in formatting tags: 
○ <|assistant|> and <|user|>
○ Replacing with <|A|> and <|B|> lead to similar results

● Some responses begin by rephrasing the instruction…are we only really 
tuning on “responses”?

○ Filtered LIMA instructions to remove these



Conclusion

● Instruction-following can be induced implicitly using simple interventions
● (imo) Post-training is generally remarkable (recall: GPT-3 was not very 

useful), but it is important to disentangle general model behavior from specific 
post-training interventions

○ E.g., If other algorithmic interventions lead to similar behavior, we can ascribe less to our 
specific algorithms / our intended mechanism 

○ Other examples: ICL w/ wrong examples, reasoning with good trace but wrong answer
● Broadly---from reasoning to instruction following---it does seem that most 

capabilities are already learned during pre-training


