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Credits: | am mostly just the messenger

Many many slides shamelessly stolen from SK
Many paper summaries taken from ST

Many slides taken from SC

Thank you!
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What is in-context learning?

Goal: To perform some mapping from input = output with few examples

olive, polive
| love doves they're so nice and pretty, positive green, pgreen
My soul feels ephemerally drained, negative conda, pconda
Ilce cream makes me happy, positive airplane, pairplane
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Two broad forms:

Task Recognition: Has seen task before, figures out it needs to do that task

Task recognition toy model: HMM'’s | love doves they're so nice and pretty, positive
My soul feels ephemerally drained, negative
Ice cream makes me happy, positive

Task Learning: Has never seen task, learns the pattern

Task learning toy model: Linear regression  give, polive

green, pgreen
conda, pconda
airplane, pairplane



Style 1: Task Recognition



Implicit Inference Hypothesis

Consider an implicit concept & which represents the “task”

Assume pretraining documents are generated in the following manner

- Sample a concept from a prior
- Sample a document from HMM with this parameter

Example: if the concept is sentiment analysis, then given a movie review, the
model will produce the sentiment of the movie review



1. Pretraining documents
are conditioned on a
latent concept (e.g.,
biographical text)

Albert Einstein was a German theoretical physicist, widely
acknowledged to be one of the greatest physicists of all time.
Einstein is best known for developing the theory of relativity, but
he also ....

Concept
(e.g., wiki bio)

Input (x) Output (y)  Delimiter

2. Create independent Albert Einstein was German \n
examples from a shared /

concept. If we focus on full
names, wiki bios tend to
relate them to nationalities.

Concept

(e.g., wiki bio) / —> Mahatma Gandhi was Indian \n

. . ..brilliant?
\ Marie Curie was ?

...Polish?

3. Concatenate examples into a prompt and predict next word(s). Language model (LM) implicitly
infers the shared concept across examples despite the unnatural concatenation

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curiewas =—>| LM |=—>  Polish




In-context learning as implicit Bayesian inference

“An Explanation of In-context Learning as Implicit Bayesian Inference” [Xie,
Raghunathan, Liang, and Ma, 2022]

LLMs aren’t explicitly trained to perform in-context learning. So, how do they do it?
Hypothesis:

1. During pre-training, model is forced to learn latent concepts that span multiple
sentences/paragraphs

2. So, in-context learning arises from learning shared prompt concept across examples



In-context learning as implicit Bayesian inference

Hypothesis: During pre-training, model is forced to learn latent concepts that
span multiple sentences/paragraphs. So, in-context learning arises from learning
shared prompt concept across examples.

p(output|prompt) = / p(output|concept, prompt)p(concept|prompt)d(concept).

concept

If p(concept | prompt) concentrates on the prompt concept with more examples,
then the LM learns via marginalization by “selecting” the prompt concept

Thus, in-context learning —> LM implicitly performing Bayesian inference.



Proving hypothesis in HMM setting

Use HMM to model concepts and output generation

. N SV delim _, | delim SO delim _,
[Sn: -Ltest] = [-Lla Y1, 0 » L2,Y2,0 yeryLnyYn, O ) -Ltest] ~ Pprompt-

Condition 1 (Distinguishability). We define 6* to be distinguishable if for all 6 € ©,0 # 6%,

k:
0 0
E KL;i(07(|0) > €start + €delim-
j=1
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Proving hypothesis in HMM setting

Use HMM to model concepts and output generation

. N SV delim _, | delim JU delim _,
[Sn: -Ltest] = [-Lla Y1, 0 y L2, Y2,0 sy Lns Yn, O ; 'Ltest] ™~ Pprompt-

Theorem 1. Assume the assumptions in Section 2.1 hold. If Condition 1 holds, then as n — oo the predic-
tion according to the pretraining distribution is
arg max p(y|Sn, Teest) — argmax Pprompt (Y| Trest)- (15)
y Y
Thus, the in-context predictor f, achieves the optimal 0-1 risk: lim,, o Lo-1(fn) = infy Log(f).



Also show error decrease approximately inversely in example length k

Theorem 2. Let the set of 6 which does not satisfy Equation 14 in Condition 1 to be B. Assume that KL
divergences have a 2nd-order Taylor expansion around 0*:

. . 1 . . «
Vi >1, KL;j(6*]|0) = 5(9 —0") L p-(0 — 0%) + O(]|0 — 6%)) (16)

where I g- is the Fisher information matrix of the j-th token distribution with respect to 6*. Let vp- =
max; Muox(Li0%) 2ohere Ayaes Amin Teturn the largest and smallest eigenvalues. Then for k > 2 and as n — oo,

min J Ay (£;,6+ )
the 0-1 risk of the in-context learning predictor f,, is bounded as

. 0 0
i Zoa(f,) < inf Loaf) + 9~ (0 (2 poRecelCm * ) ) 17)
n—o0 -

where g(§) = 3((1 — ) log(1 — ) + (1 + &) log(1 + 0)) is a calibration function (Steinwart, 2007, Avila
Pires and Szepesvdri, 2016) for the multiclass logistic loss for § € [0, 1), assuming that the minimizers of the
0-1 risk and multiclass logistic risk are the same.



Model of in-context learning holds
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Figure 3: In-context accuracy (95% intervals) of Transformers (left) and LSTMs (right) on the GINC
dataset. Accuracy increases with number of examples n and length of each example k.
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In-context learning fails when model might expect it
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Figure 4: Ablation studies for 4 layer Transformers on the GINC dataset with vocab size 50. (Left)
When pretrained with only one concept, in-context learning fails. (Middle) When the pretrain-
ing data has random transitions, the model sees all token transitions but in-context learning fails.
(Right) When prompts are from random unseen concepts, in-context learning fails to extrapolate.



Improvement across model size —> not just memorization, concept learning
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Figure 5: In-context accuracy (95% in-
tervals) of Transformers improves as
model size increases on the GINC

dataset for vocabulary sizes 50, 100,
and 150.



Martingale property paper

Possible rebuttal to the Bayesian learning view: Martingale property

“Is In-Context Learning in Large Language Models Bayesian? A Martingale Perspective”

Perspective:

1. LLMs are autoregressive generative models

2. Bayesian model implies Martingale property

3. Martingale property is necessary for predictions in exchangeable data setting
4. It establishes a principled notion of the model’s uncertainty

5. LLMs do NOT exhibit Martingale property —> probably not Bayesian



Martingale property

Martingale property describes the invariance of a model’s predictive distribution
with respect to missing data from a population.

Definition 1. The predictive distributions for {Z;} satisfy
the martingale property if for all integers n,k > 0 and
realisations {z, z1.,, } we have

pM(Zn—Fl:Z‘Zl:n:Zl:n) :pM(Zn—}—k:Z‘Zl:n:Zl:n)- (1)



Why is the martingale property natural?

“All information about the distribution of X and Y presented to the model lies in the
observed data

Imputing the samples should hence not change the predictive distribution for the
next token when averaged over all possible imputations.

This is precisely the core idea of the martingale property

If the predictive distribution for the next token changes on average, the model is
‘creating new knowledge’ when there is none: it is .

Do we agree?



So, what?

MP includes exchangeability (if we want ordering to not matter)
MP allows for “principled notion of uncertainty”

It would allow uncertainty to be decomposed / inferred in Bayesian way

Main point of paper: A system that does not satisfy MP cannot be Bayesian

]

They must be performing “



Two testable implications of MP

Corollary 1. Let {Z; : i € N} be a sequence of random
variables satisfying the martingale property. Then for all
integers n,n', k > 0 andn’ > n it holds that:

(1) E(g(zn+l)‘len) — E(Q(Zn+k')|len) fOl’” all inte-

grable functions g, and

(”) E((Zn’+k+l — Z'rz’—}-l)Z‘,_l_/lZl:n) = 0.



All simulations support deviation from MP

Note: States/concept is drawn from prior, not given by HMM
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Figure 4: Checking the martingale property on Gaussian
experiments. We present runs with § = —1,n = 100, m =
50 from different LLMs (x-axis) with test functions g(z) =

z and g(z) = z2. See Fig. 3 for further details.
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Figure 5: Checking the martingale property on the natural
language experiment. We present both checks with test
statistics computed separately for each value of X; (x-axis).
See Fig. 3 for further details.



Scaling behavior of LLM uncertainty

To check whether uncertainty of LLM scales with (ideal) Bayesian model

GPT-3

GPT-3.5

Llama-2-7B

Mistral-7B

ref. Bayesian model
fractional Bayes (a=0.5)

fractional Bayes (a=2)

0.06 1

Figure 6: Scaling of epistemic uncertainty on the Bernoulli
experiment: the test statistic 73 (§3.3) computed on LLMs,
compared with Bayesian and fractional Bayesian models.



Style 2: Task Learning



Linear Regression Setup

The opposite setup would be that you have to extrapolate a new solution on the fly
from the inputs.

Case study: given X, WXg, X4, WXy, .., Xquerys With w sampled from W, try to predict

the output WX ,ery

Under quadratic loss and gaussian prior for weights and covariates


https://arxiv.org/abs/2208.01066

Linear Regression Setup

The opposite setup would be that you have to extrapolate a new solution on the fly
from the inputs.

Case study: given X, WXg, X4, WXy, .., Xquerys With w sampled from W, try to predict

the output WX ,ery

Under quadratic loss and gaussian prior for weights and covariates, Bayes-optimal
solution is linear regression


https://arxiv.org/abs/2208.01066

Linear Regression Setup

Given X,, WXg, X4, WXq, ..., Xquerys with w sampled from W, try to predict the output

WXquery

- Train a transformer to autoregressively output these predictions

Training data Inference
Wi, ..osw, = N(O, 1) 4 . | Wy ~ N(O, 1)
5@ 5@ }A,(t)
-k
|

T
I to. WiestX
auto-regressive model =

B I




Linear Regression Setup

Given X,, WXg, X4, WXq, ..., Xquerys with w sampled from W, try to predict the output

WXquery

- Train a transformer to autoregressively output these predictions
- Transformer can match the Bayes-optimal solution of linear/ridge regression

=== Transformer

» Least Squares
=== 3-Nearest Neighbors
= Averaging

0 10 20 30 40
in-context examples



Linear Regression Setup

Toy model: given x,, f(xy), X4, f(X4), ..., X with f sampled from F, try to predict

"1 frquery?

the output f(Xqyer)

- Demonstrates impressive results = § \\\M:
when function family is noisy ¥
linear regression problems, o
decision trees, MLP’s, etc T eometeomies

(a) Sparse linear functions

1.2
—— Transformer

10 R e e —— Least Squares
s — 3-N t Neigh
gO.B 3-Nearest Neighbors
] —— 2-layer NN, GD
E 0.6 \l
S 0.4
o
a

0.2

0.0

0 20 40 60 80 100
in-context examples

(c) 2-layer NN

150 —— Transformer
1.25 —— 3-Nearest Neighbors
~—— Greedy Tree Learning
1.00 } { —— XGBoost
0.75 M ™ _. Greedy Tree Learning
(w/ sign preproc.)
0.50 vy, XGBoost
Y8, T 7' (w/ sign preproc.)
0.25 gn prep|
0.00
0 20 40 60 80 100
in-context examples
(b) Decision trees
12 —— Transformer

1.0 A B s S —— Least Squares
08 - 3-Nearest Neighbors
: —— 2-layer NN, GD
0.6
0.4
0.2
0.0
0 20 40 60 80 100

in-context examples

(d) 2-layer NN, eval on linear functions



Linear Regression Follow-up Work

- Transformers can efficiently express solutions to in-context learning problems
- Goes slightly beyond Universal approximation theorem due to efficiency
- What learning algorithm is in-context learning? Investigations with linear models
-  Transformers Learn In-context by Gradient Descent

- In some very very very toy settings, the transformer theoretically converges to

the in-context learner
- Can share papers if you’re actually interested


https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2212.07677

What about generalization?

In most experiments with task learning, the model is trained on the tasks its being
evaluated on, so there’s NO DISTRIBUTION SHIFT

Therefore, these experiments, though they’re in ICL format, do not give any insight
beyond in-distribution generalization, since models get infinite training data



What about generalization?

There are some interesting distribution shift results



What about generalization?

There are some interesting distribution shift results

- The model tolerates distribution shifts in the weights (scaling the norm of w)
- The model does not tolerates covariate shift (scaling the norm of x)

1.0 1.0 - —————————— scale
— 1/3
5 0.8 0.8 — /2
=
v 0.6 0.6 -1
ho] — )
g
< 0.4 0.4 ‘ — 3
o N\ = = Least Squares
?02 0.2
0.0 0.0 —————
0 10 20 30 40 0 10 20 30 40
in-context examples in-context examples

(a) scaled x, Transformer (b) scaled w, Transfomer



What about generalization?

There are some interesting distribution shift results

- Consider finite selection of w’s
- Solution generalizes better than the Bayes-optimal solution to all possible w’s

4096 retrained on 32 LP, test loss

4096 weights at PT W Vis* ¥ = IR
Greedy is picking nearest weight § 0.8 e — sirjg;:)(lomimal)
e 0.6 Oracle
Oracle is Bayes-optimal S 0.4
solution for PT dist " 0.2
0.0
0 10 20 30 40

in-context examples



What about generalization?

There are some interesting distribution shift results

- Consider finite selection of w’s

- Solution generalizes better than the Bayes-optimal solution to all possible w’s

- This is likely a consequence of simplicity bias in that the generalizing solution is lower
complexity than the “memorized” solution

Training loss for discrete distribution

Figure 11: Training over the discrete distribution first
achieves good continuous loss. At the start of training, the

2 == Loss on continuousdist model learns a function closer to the ridge regression solu-
S == = Optimal on continuous dist . . . e .
2 — Loss on discrete dist tion. However, later in training, the model swaps this out to
1 = ° Optimalon discrete dist achieve the Bayes optimal solution of discrete regression.

T T T T T T
0 1000 2000 3000 4000 5000
step count



Distinguishing Task Recognition and Task Learning



Flipped Labels Setup

Introduced by Rethinking the Role of Demonstrations

You can either interpolate a new rule on the fly, or recall your knowledge of
sentiment analysis

Studied concurrently by \What In-Context Learning “Learns” In-Context:
Disentangling Task Recognition and Task Learning and Larger language models
do in-context learning differently

| love doves they're so nice and pretty, negative
My soul feels ephemerally drained, positive
Ice cream makes me happy,


https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2303.03846

Setting Prompt Correct Output

4 N
“best movie ever.”
. ( tive negative
Random ~ I | itive
Task Recognition p = _
“i liked it”
Sentiment: )
domly semplod labol
“best movie ever.”
Sentiment: 0
Abstract — — n
Task Learning “i liked it”
Sentiment:
labels mapped to abstract symbols
“best movie ever.”
Gold Sentiment: positive
Task Recognition LM positive
+
Task Leamii “i liked it”
ol ng [ Sentiment:

gold labels



Regular ICL

Natural language targets:
{Positive/Negative} sentiment

Flipped-Label ICL

Flipped natural language targets:
{Negative/Positive} sentiment

SUL-ICL

Semantically-unrelated targets:
{Foo/Bar}, {Apple/Orange}, {A/B}

Contains no wit [...] \n  Negative Contains no wit [...] \n Positive Contains no wit [...] \n Foo
Very good viewing [...] \n  Positive Very good viewing [...] \n Negative Very good viewing [...] \n Bar
A smile on your face \n A smile on your face \n A smile on your face \n

Language
Model

Language
Model

Language
Model

Positive




Results

Models do a combination of both and neither fully explain the full behavior



Results

Models do a combination of both and neither fully explain the full behavior

Punchline: Larger models go closer to task learning rather than task recognition

100

<80

260
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< 20
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Results

Models do a combination of both and neither fully explain the full behavior

Key result: Larger models go closer to task learning rather than task recognition

PalLM Codex InstructGPT GPT-3
100 100 100
90 90 90
- 80 | 80 | 80
IS 70 |- 70 |- 70
g 60 |- 60 |- 60
1 50 | 50 |- 50
§ 40 40 40
31 30 30 30
< 20 20 20
10
0

8B 62B 540B c-c-1 c-d-1 c-d-2 a-1 b-1c-1d-1d-2 a b ¢ d

O Semantically-unrelated targets (SUL-ICL) B Natural language targets (regular ICL)



Results

Models do a combination of both and neither fully explain the full behavior

Key result: Larger models go closer to task learning rather than task recognition

GPT-3 LLaMA OPT
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An alternative view: pretraining task diversity

Follow-up paper: Pretraining task diversity and the emergence of non-Bayesian in-
context learning for regression [Raventos, Paul, Chen, Ganguli 23]

Task recognition Task learning (Non-
(Bayesian) regime bayesian) regime




Phase transition

Setup:

- n distinct linear regression tasks in the pre-training data
- Vary n and study how the model does at out-of-sample
(but in-distribution) tasks

Main finding: phase transition

Before phase transition: “Bayesian learning” (figure out
which regression task this is and give the label)

After phase transition: “Task learning” (replicates ridge
regression)

—o— Ridge
\‘i —o— dMMSE
Y
R
S \

20 214 2I8 22]L2 2116 250
# Pretraining Tasks



Open questions

- What are the sufficient conditions for pre-training to lead to in-context learning?

- How do we ensure validity/applicability of synthetic setups?

What else?



