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ML powering systems like Claude, DALL-E, Google Photos: 

Implications: unpredictability, new considerations, invalidated assumptions
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How can tools from statistics, CS theory, and operations inform a better 
understanding of machine learning algorithms and systems?

What are the right questions to ask, and phenomena to explain—at what level of 
abstraction should we be aiming to explain them?

What theoretical models not only explain unexpected phenomena, but also 
predict new phenomena that we can verify experimentally?
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Topics by weighted combination of {interest, coverage}: 

Data selection, curation, and synthesis 
Scaling laws & prediction 
Expressivity & architectures/Evaluation & Auditing/Factuality 
Post-training (continued pre-training, preference tuning, …) 

Simple descriptive and 
predictive models 

Where does theory agree/
disagree with practice? 

Where can we draw from 
known techniques?20

25 {
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3. Prepare a 20-30 minute presentation, accessible to a second year PhD student, focusing on 

(a) seeding discussion and (b) identifying gaps and connections, and (c) formulating open 
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Everyone else: Read the paper/watch a podcast/something! Try to come with some familiarity
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Introduce topics & papers for this year (scaling laws & data selection) 

For each topic: 

Problem setup/definition 

Motivation 

Methodology 

Extensions
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Goal: Make a predictor for the average test loss as a function of these scaling axes

ℓ ∝ fβ(N, D, C)
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Classical analog: Estimation error bounds 

e.g., fixed-design linear regression:

In deep learning, we can’t prove bounds, so we empirically fit trends to actual data

∥θ − θ*∥2
Σ ≤ O ( d

n )

An early example of a neural “scaling law:” [Hestness et al. 2017] 
relate # data to minimum test loss for machine translation. 
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We can use scaling laws to:

Predict the behavior of larger models without training them
How big of a model & how much data do I need to achieve a target loss?

Design “compute-optimal” training by balancing terms [Hoffman et al 2022]

Given the amount of training data I have, what is the right model size?

Understand & diagnose bottlenecks to model performance
Are we “running out” of data?

Make model selection decisions based on predicted behavior
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Scaling laws: Methodology II
Several immediate limitations (& fixes):

Q: Can we vary > 1 
scaling axes at once?

ℓ = ( N0

N )
α

+ ( D0

D )
β

+ ℓ0

[Hoffman et al 2022]

Q: What if we see each 
datapoint > once?

[Muennighoff et al 2021; 
Gadre et al 2024]

Q: Do we need to train 
hundreds of models?

[Ruan Maddison Hashimoto 2024]
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Scaling laws: Explanations
Most theoretical explanations given using random feature models

Example [Bahri Dyer Kaplan Lee Sharma 2021]: 

Study two-parameter scaling laws  

Take one of , study the scaling behavior of the other 

In these infinite limits, find similar phenomena to practice—training is sometimes 
“data-bottlenecked” and sometimes “compute-bottlenecked”

ℓ(N, D)

N, D → ∞

Many refinements [Bordelon Atanasov Pehlevan 2024] and empirical caveats [Vyas Bansal 
Nakkiran 2022] 



Data selection/curation/synthesis
Overarching question: how does the composition of the data we train on affect the 
ML models we get, and what interventions can we perform? 

Problem setup: Learning algorithm  (mapping dataset  ML model), pool of 
messy/scraped data , and a target metric  (mapping ML model  number) 

Goal: Dataset  such that  maximizes the target metric 

A →
S f →

D A(D) f

D* = max
D∈𝒵*

f(A(D)) D* = max
D⊂S

f(A(D))

General data design Data selection/curation
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Data selection/curation
Classical analogs: Optimal experiment design, active learning, sample reweighing 
(e.g., in causal inference)

In deep learning, (a) train and test distributions do not match (b) parameters are 
meaningless (c) data is huge-scale & models are “black-box”

max
X

det(X⊤X)

Which data minimizes the 
size of the resulting CI?

How do I combine data to 
make a valid inference?



Data selection/curation: Motivation



Data selection/curation: Motivation

Scraped internet data



Data selection/curation: Motivation

+Scraped internet data



Data selection/curation: Motivation

+Scraped internet data



Data selection/curation: Motivation

+Scraped internet data



Data selection/curation: Motivation

+Scraped internet data



Data selection/curation: Motivation

+Scraped internet data

electroniccigarettereviewed.info 
prestigedentalproducts.com 

brain-dumps.us



Data selection/curation: Motivation

+Scraped internet data

electroniccigarettereviewed.info 
prestigedentalproducts.com 

brain-dumps.us

http://ufdc.ufl.edu/AA00010883/00095
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Data selection/curation: Methods
Taxonomy: 

Goal: {targeted, untargeted} 
Are we maximizing a target metric, or trying 
to simulate training? 

Granularity: {sources, samples} 
Are we combining/weighting datasets or 
filtering individual samples? 

Distribution shift: {biased, unbiased} 
Does the test distribution match train?

D* = max
D⊂S

f(A(D))

Scraped web data

(Deduplication, lexical mining, 
data cleaning…)

Filter  based on a pre-defined 
“quality” function 
S

ϕ



Data selection/curation: Methods
Taxonomy: 

Goal: {targeted, untargeted} 
Are we maximizing a target metric, or trying 
to simulate training? 

Granularity: {sources, samples} 
Are we combining/weighting datasets or 
filtering individual samples? 

Distribution shift: {biased, unbiased} 
Does the test distribution match train? (Distributionally robust 

optimization, bilevel optimization, …)

Restrict  to mixture of pre-defined sourcesD

D* = max
D⊂S

f(A(D))

Scraped web data θt → θt+1
Single step

Optimize worst-source accuracy

α1 α2 α3 α4
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Taxonomy: 

Goal: {targeted, untargeted} 
Are we maximizing a target metric, or trying 
to simulate training? 

Granularity: {sources, samples} 
Are we combining/weighting datasets or 
filtering individual samples? 

Distribution shift: {biased, unbiased} 
Does the test distribution match train?

D* = max
D⊂S

f(A(D))

Learn a model  from  
directly, then maximize 

̂f D → f(A(D))
̂f

(Influence-based selection, 
data valuation, …)



Data selection/curation: Methods
Taxonomy: 

Goal: {targeted, untargeted} 
Are we maximizing a target metric, or trying 
to simulate training? 

Granularity: {sources, samples} 
Are we combining/weighting datasets or 
filtering individual samples? 

Distribution shift: {biased, unbiased} 
Does the test distribution match train?

D* = max
D⊂S

f(A(D))

Learn or model mixture  directly→ f(A(D))

(Source-specific scaling laws, 
data mixing laws, …)



Thank you (and please sign up!)
Sign-up sheet: https://tinyurl.com/reform-ml-signup 

Mailing list: reform-ml-list@stanford.edu  

Contact: andrewi@stanford.edu, saberi@stanford.edu  

Tentative schedule: 

1. 10/23 - Scaling laws 1 (Foundations) 

2. 10/30 - Scaling laws 2 (Theoretical explanations) 

3. 11/6 - Data selection 1 (Optimization-based methods) 

4. 11/13 - Data selection 2 (Attribution-based methods) 

5. 11/20 - Data selection 3 (Theoretical explanations) 

6. 11/27 - Thanksgiving  

7. 12/4 - Reserved for an extra lecture on one of the topics (or on another!)

https://tinyurl.com/reform-ml-signup
mailto:reform-ml-list@stanford.edu
mailto:andrewi@stanford.edu
mailto:saberi@stanford.edu

