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Idealized picture of ML: something like 0* = argminE, ,[£(z;; 0)]
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Design decisions: choosing ® to avoid overfitting, choosing a good (convex)
loss function £, what optimizer to use for efficiency...

Guarantees: Convergence rates, generalization bounds, out-of-distribution error
control, uncertainty quantification (e.g., via confidence intervals)
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ML powering systems like Claude, DALL-E, Google Photos:
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more expensive... still matters (a lot!) efficiency part regularization

Implications: unpredictability, new considerations, invalidated assumptions
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What do rigorous foundations for this new age of ML look like?

How can tools from statistics, CS theory, and operations inform a better
understanding of machine learning algorithms and systems?

What are the right questions to ask, and phenomena to explain—at what
should we be aiming to explain them?

What theoretical models not only explain unexpected phenomena, but also
predict new phenomena that we can verify experimentally?
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Goal: Build intuition, leverage diversity in this group, start collaborations (bringing new
perspectives from everyone's field)

Sign up to be a discussant at https://tinyurl.com/reform-mli-signup

Goal(s) of the discussant:

1. A single “"deep dive” per week about one subject (can be multiple papers) by 1-2 discussants

2. We have suggested several papers for each week, more than one can cover thoroughly in a
week. Pick a small, focused set of papers and read them thoroughly

3. Prepare a 20-30 minute presentation, accessible to a second year PhD student, focusing on

(a) seeding discussion and (b) identifying gaps and connections, and (c) formulating open
problems

Everyone else: Read the paper/watch a podcast/something! Try to come with some familiarity
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Today's meeting

Introduce topics & papers for this year (scaling laws & data selection)
For each topic:

Problem setup/definition

Motivation

Methodology

Extensions
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resulting machine learning model behavior?

Problem setup: Scaling in deep learning is typically along one of three axes: model
complexity (proxied by number of parameters), dataset size, amount of compute (# of
training steps over the data)

Goal: Make a predictor for the average test loss as a function of these scaling axes

4 ocfﬁ(N, D, C)
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Scaling laws

Classical analog: Estimation error bounds

e.qg., fixed-design linear regression:

d
10— 0|2 <O | —

14
In deep learning, we can't prove bounds, so we empirically fit trends to actual data

0.62
0.58 1

0.54 1

An early example of a neural “scaling law:" [Hestnhess et al. 2017]
relate # data to minimum test loss for machine translation.

Misimum Tect Lose (Leg <c
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Scaling laws: Motivation

We can use scaling laws to:

Predict the behavior of larger models without training them

III

Design “compute-optimal” training by balancing terms

Understand & diagnose bottlenecks to model performance

Make model selection decisions based on predicted behavior
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General recipe (most basic version of a scaling law):

Pick many (relatively small) values of N, D, C

D
Postulate a functional form for £, e.g., for fixed D, suppose £ o ¢ 0T (30)

Fit a power law using basic regression
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Several immmediate limitations (& fixes):

Q: Can we vary > 1 Q: What if we see each || Q: Do we need to train
scaling axes at once? datapoint > once? hundreds of models”?
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Scaling laws: Explanations

Most theoretical explanations given using random feature models

Example
Study two-parameter scaling laws £ (N, D)

Take one of N, D — o0, study the scaling behavior of the other

In these infinite limits, find similar phenomena to practice—training is sometimes
"data-bottlenecked” and sometimes “compute-bottlenecked”

Many refinements and empirical caveats



Data selection/curation/synthesis

Overarching question: how does the composition of the data we train on affect the
ML models we get, and what interventions can we perform?

Problem setup: Learning algorithm A (mapping dataset — ML model), pool of
messy/scraped data S, and a target metric f (mapping ML model — number)

Goal: Dataset D such that A(DD) maximizes the target metric f

D* = max f(A(D)) D* = max f(A(D))
DeZ* DCS

General data design Data selection/curation
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Data selection/curation

Classical analogs: Optimal experiment design, active learning, sample reweighing
(e.g., In causal inference)

Which data minimizes the
size of the resulting CI?

max det(X ' X)
X

P
D-criterion
.‘. ..............................
<
A
I

How do | combine data to

make a valid inference?

External patient data
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Data selection/curation

Classical analogs: Optimal experiment design, active learning, sample reweighing

(e.g., In causal inference)

External patient data

ps
D-criterion
max det(X ' X) A
X
]

Simulated patient pool
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In deep learning, (a) train and test distributions do not match (b) parameters are
meaningless (c) data is huge-scale & models are “"black-box”
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electroniccigarettereviewed.info

prestigedentalproducts.com
brain-dumps.us

Scraped internet data + % — 'y




Data selection/c

electroniccigarettereviewed.info
prestigedentalproducts.com
brain-dumps.us

Scraped internet data

http://ufdc.ufl.edu/AA00010883/00095
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Taxonomy:

Goal: {targeted, untargeted}

Granularity: {sources, samples}

Distribution shift: {biased, unbiased}



Taxonomy:

Goal: {targeted, untargeted}

Granularity: {sources, samples}

Distribution shift: {biased, unbiased}

Data selection/curation: Methods

D* = max f(A(D))
DCS

Filter S based on a pre-defined
“quality” function ¢

Scraped web data
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(Deduplication, lexical mining,
data cleaning...)



Data selection/curation: Methods
D* = max f(A(D))

Taxonomy: DcCS
Goal: {targeted, untargeted} Restrict D to mixture of pre-defined sources
: —
Granularity: {sources, samples} Scraped web data Oy = O

Distribution shift: {biased, unbiased}
(Distributionally robust

optimization, bilevel optimization, ...)



Data selection/curation: Methods

D* = max f(A(D))
Taxonomy: DcCS

Goal: {targeted, untargeted} Learn amodel f from D — f (A(D))
directly, then maximize f

20 4
° - 10 - Individual target examples (i.e.,
Granularity: {sources, samples} Actual margin , oy ey §
E[A(x, S)] |
0 ,
(training 100 models — (\___/"}
S; and computing -

average margin on x) 0 10

. . (passing the characteristic vector of §;
Predicted margin g, (S;) © o
through the datamodel| for x)

Distribution shift: {biased, unbiased}
(Influence-based selection,

data valuation, ...)



Data selection/curation: Methods

Taxonomy:

D* = max f(A(D))
DCS
Goal: {targeted, untargeted}

Learn or model mixture — f(A(D)) directly

q.
(1N ol 4
Granularity: {sources, samples} ol
/ Minimum Loss 0\\
rix‘tu DO'OO);%».. \006\@
N 9/ Q@Q 3
Distribution shift: {biased, unbiased}

(Source-specific scaling laws,
data mixing laws, ...)



Thank you (and please sign up!)

Sign-up sheet: https://tinyurl.com/reform-ml-signup

Mailing list: reform-ml-list@stanford.edu

Contact: andrewi@stanford.edu, saberi@stanford.edu

Tentative schedule:

1.

o B~ W B

10/23 - Scaling laws 1 (Foundations)

10/30 - Scaling laws 2 (Theoretical explanations)
11/6 - Data selection 1 (Optimization-based methods)
11/13 - Data selection 2 (Attribution-based methods)

11/20 - Data selection 3 (Theoretical explanations)

12/4 - Reserved for an extra lecture on one of the topics (or on another!)
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