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Reasoning models think before they answer

Normal LLM:
Question Answer
Reasoning LLM:
. Thinking
Question — R aL . —
Answer

https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1



Sample AIME 2024 problem

Problem

Let ABCD be a tetrahedron such that AB = CD = v41, AC = BD = v/80,and BC = AD = /89. There exists a point [ inside the
tetrahedron such that the distances from I to each of the faces of the tetrahedron are all equal. This distance can be written in the form M
p

where m, n, and p are positive integers, m and p are relatively prime, and = is not divisible by the square of any prime. Find m + n + p.

Solution 1

Notice that 41 = 42 + 52,89 = 52 + 82,and 80 = 8% + 42, let 4 (0,0, 0), B (4,5,0), C (0,5,8),and D (4, 0, 8). Then the plane BC'D
has a normal

—4 4 10
L5 BC x CD _ 1 0 | x 5 8
n:=— — 5| =
4 T4
8 0 5

Hence, the distance from A to plane BC D, or the height of the tetrahedron, is

https://artofproblemsolving.com/wiki/index.php/2024 _AIME_|_Problems/Problem_14



It learns...!
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DeepSeek-R1-Zero AIME accuracy during training
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Figure 2 | AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample
16 responses and calculate the overall average accuracy to ensure a stable evaluation.



It learns...to think more over time!

DeepSeek-R1-Zero average length per response during training
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Figure 3 | The average response length of DeepSeek-R1-Zero on the training set during the RL
process. DeepSeek-R1-Zero naturally learns to solve reasoning tasks with more thinking time.
https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1




Performance comparable to OpenAl's ol

DeepSeek-V3
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Figure 1 | Benchmark performance of DeepSeek-R1.
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The recipe to create a 'mormal” LLM

Pre-training

Post-training
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Figure 12-3. The three steps of creating a high-quality LLM.




What did Deepseek-R1 do differently?

Pre-training Post-training
- Instruction- Preference- )
Untrained Base tuned tuned
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Figure 12-3. The three steps of creating a hjgh-quality LLM.

They used a different post-training recipe on the base model!




Deepseek-R1 Zero
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Large-scale Reasoning-Oriented
Reinforcement Learning

DeepSeek-v3-Base

DeepSeek-R1-Zero

Training step 1

Solution score (reward)

Training prompt
wme pylhonoode that takes a. ' here’s a joke about frogs Low
list of numbers, returns themina | | Model checkpoint [P oo
Low
Update the model so its less likely to output low def sort_and_prependa) High

score solutions like these and more likely to
output high-score solutions in response to such
a prompt

https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1



Rule-Based Rewards

1. Accuracy rewards: check math answers and coding test cases Verifiable!

2. Format rewards: whether the model puts its thinking process within tags

A conversation between User and Assistant. The user asks a
The assistant first thinks about the reasoning process in b
with the answer. The reasoning process and ans are enclosed within <think> $7think> and

<answer> </answer> tags, respectively, i.e. easoning process here
<answer> answer here </answer>. User: prompt. Assistant:

question, and the Assistgnt solves it.

Table 1 | Template for DeepSeek-R1-Zero. prompt will be replaced with the specific reasoning
question during training.



Group Relative Policy Optimization (GRPO)
vs Proximal Policy Optimization (PPO)
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Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.
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Problem with Rl1-Zero

e Mixes language in response - English + Chinese
e Chain of thoughts are not always readable/comprehensible
e Non-reasoning capabilities are limited

Two natural questions:

e Can cold starting with high quality data improve training efficiency and boost
performance further?

e How to train a user-friendly model that produces readable Col and strong
general capabilities?



Deepseek-R1

Cold start SFT: with small amount (thousands) of long Col data generated by R1-Zero
Better readability Better performance

RL (same as R1-Zero)

Second SFT:
600K self-generated reasoning data after filtering

200K non-reasoning data for general-purpose tasks and other domains

Second RL



Deepseek-R1

https://x.com/SirrahChan/status/1881488738473357753
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Distilling Deepseek-R1 into Llama and Qwen
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Distilled models...also very very good!

3.2. Distilled Model Evaluation

GPQA LiveCode

Model AIME 2024 MATH-500 Diamond  Bench CodeForces
pass@l cons@64 pass@1 pass@1 pass@1 rating
GPT-40-0513 9.3 13.4 74.6 499 32.9 759
Claude-3.5-Sonnet-1022 16.0 26.7 78.3 65.0 38.9 717
OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
QwQ-32B-Preview 50.0 60.0 90.6 54.5 419 1316
DeepSeek-R1-Distill-Qwen-1.5B  28.9 52.7 83.9 33.8 16.9 954
DeepSeek-R1-Distill-Qwen-7B 55.5 83.3 92.8 49.1 37.6 1189
DeepSeek-R1-Distill-Qwen-14B 69.7 80.0 93.9 591 53.1 1481
DeepSeek-R1-Distill-Qwen-32B 72.6 83.3 94.3 62.1 572 1691
DeepSeek-R1-Distill-Llama-8B 50.4 80.0 89.1 49.0 39.6 1205
DeepSeek-R1-Distill-Llama-70B 70.0 86.7 94.5 65.2 57.5 1633

Table 5 | Comparison of DeepSeek-R1 distilled models and other comparable models on

reasohine-related benchmarks
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Direct RL on base model leads to reasoning!
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Figure 3 | The average response length of DeepSeek-R1-Zero on the training set during the RL

process. DeepSeek-R1-Zero naturally learns to solve reasoning tasks with more thinking time.
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Aha moment: self-correction

Question: If a > 1, then the sum of the real solutions of m = x is equal to
Response: <think>

To solve the equation Va — Va +x = x, let’s start by squaring both - - -
(Va—Varx) =x* = a-varx=x

Rearrange to isolate the inner square root term:

(a-x?)?=z=a+x = a®-2ax*+ ()% =a+x = x*-2ax*-x+(a*-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:

Va—+Va+x=x

First, let’s square both sides:

a— a+x:x2 — a+x:a—x2

Next, I could square both sides again, treating the equation: - - -

Table 3 | An interesting “aha moment” of an intermediate version of DeepSeek-R1-Zero. The
model learns to rethink using an anthropomorphic tone. This is also an aha moment for us,
allowing us to witness the power and beauty of reinforcement learning.



Rule-Based Rewards

1. Accuracy rewards: check math answers and coding test cases Verifiable!

2. Format rewards: whether the model puts its thinking process within tags

A conversation between User and Assistant. The user asks a
The assistant first thinks about the reasoning process in b
with the answer. The reasoning process and ans are enclosed within <think> $7think> and

<answer> </answer> tags, respectively, i.e. easoning process here
<answer> answer here </answer>. User: prompt. Assistant:

question, and the Assistgnt solves it.

Table 1 | Template for DeepSeek-R1-Zero. prompt will be replaced with the specific reasoning
question during training.



Unsuccessful attempts

1. Process Reward Model (PRM) Not verifiable!

a. Challenging to define a step in general reasoning
b. Challenging to determine whether a step is correct

c. Significant reward hacking
2. Monte Carlo tree search (MCTS)

a. Exponential search space

b. Reliable value model (critic) is hard to obtain



$5.5M training cost of Deepseek-V3

Training Costs | Pre-Training Context Extension Post-Training | Total
in H800 GPU Hours 2664K 119K 5K 2788K
in USD $5.328M $0.238M $0.01M $5.576M

Table 1 | Training costs of DeepSeek-V3, assuming the rental price of H800 is $2 per GPU hour.



Al Model Training Cost Comparison

Estimated cost of various mo when using 2025 comput . in H100 hours of training compute

.~$50M

l ~$ 30 Ms20m - sa0m)
l ~$ 30 Ms2sm - s35m)

I ~$15Ms1om - s25m)

| ~$5M($4M - $12.5M)

https://www.reddit.com/r/singularity/comments/1id60qi/big_misconceptions_of training_costs_for_deepseek/



