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Method of Analysis: Asymptotics

● Compare selections schemes based on performance as the original 
dataset size (N) grows to infinity. 
○ Number of datapoints selected (n) also grows with N
○ Approaches some fixed fraction 

“Low-Dimensional Regime”: Keep dimension fixed as N grows 

“High-Dimensional Regime”: Grow dimension with N, converging to fixed ratio



Setting 1: Low-Dimension, Perfect Surrogate
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Quantity of Interest: Asymptotic Error Coefficient

Low-Dimension 
Perfect Surrogate

Population 
minimizer

Best selection scheme in a class C:

Under some assumptions:
- Limit exists
- Has a closed form in terms of 

- S 
- conditional gradient 

covariance of loss at 
- conditional hessian of the loss 

at Up next: used closed-form to solve for 
optimal strategy in certain classes. 
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Optimal Unbiased Strategy

Low-Dimension 
Perfect Surrogate

● Can simplify and optimize the asymptotic error coefficient to solve for 
the optimal unbiased strategy: 
○ Recovers selection based on influence function

○ Monotone non-increasing in selected proportion

○ Better than just random unbiased sampling

Influence function
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Optimal Non-reweighting Strategy

Low-Dimension 
Perfect Surrogate

● Again, simplify and optimize the asymptotic error coefficient to 
characterize the optimal non-reweighting strategy.

● Show that optimal strategy must be a fixed point of the following 
process:
○ Strategy induces a score function for each point
○ Optimal strategy must be a threshold decision based on score
○ Threshold parameters chosen to meet selection proportion

Linear regression setting: Z measures how different x is 
from selected data (related to leverage scores)
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Optimal Non-reweighting Strategy: Proof Idea

Low-Dimension 
Perfect Surrogate

● Suppose we have a minimizer
● Imagine perturbing        to some
● Can express perturbed error value as

● Claim:                  constant on all x with
○ If not, can construct feasible strategy that breaks non-positivity

●   Implies the threshold structure

Must be non-positive

the constant value 



Non-reweighting vs Unbiased Strategies

Low-Dimension 
Perfect Surrogate

Thm: Unbiased can be arbitrarily worse than non-reweighting strategies.
- In terms of ratio of asymptotic error coefficients

theorized empirically



Part 2: Imperfect surrogates, High-dimensional 
asymptotics



Imperfect surrogates

So far, we assume access to (essentially) P(y|x) via a perfect surrogate

What happens if the surrogate is imperfect, so P_{su}(y|x) \neq P(y|x)

First idea: “Plug in” the surrogate (treat it as if it were truly P(y|x))

Main result from this paper: This is suboptimal, but something close to it is 
roughly (minimax) optimal



First approach: Plug-in estimation

Either “read off” or



Approach for studying optimality: minimax framework

Assume that the surrogate predictor is close to (but not equal to) true model

(Doesn’t have to be TV, but we need the set to be convex)

This allows us to define minimax risk:
Test risk of estimator 
under selection 
scheme S



What is the optimal way to use the surrogate?

Intuition: we should use the “worst P(y|x)” that is near the given surrogate

Sion’s minimax theorem



High-dimensional asymptotics

Specify to:

- Gaussian covariates (so x is drawn from isotropic Gaussian with dim p)
- Response dependent only on linear function of x: 
- Generalized linear models + Ridge

In the next slide, we will just try to understand show the theorem statement :)
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Theorem statement: result

Given a selection strategy, this tells us the (asymptotic) error! 
(Importantly, does not identify optimal strategy)

Extremely vague idea: Decompose into theta_0 direction, theta_s 
direction, and the rest (which is all indistinguishable bc of Gaussianity)

The rest is an application of Gordon’s Gaussian comparison inequality 
(generalization of Slepian’s inequality)



Special case: Gaussian x, binary y

Posit data selection mechanism:

For alpha = 1/2 , roughly equivalent to influence function-based sampling (only 
because the data is Gaussian and so the Hessian has a simple closed form)

Alpha controls whether we prefer hard examples or easy:

Second derivative of log-MGF (for logistic 
regression, 1 - tanh(t)^2)

Normalizing constant

Alpha = -1 (prefer easy)                                  Alpha = 1 (prefer hard)



Results: perfect surrogate

Setting: “misspecified” linear model, so P(y=1|x) = f_1(x^T \theta)



Results: imperfect surrogate

Surrogate is trained with additional N_{su} samples



Takeaways (imperfect surrogate) 



Experimental Verification


