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Each x included in dataset
independently with probability

W(ZE,P(QE)) ’LU(ZC,P(ZC)) > 0

If included, appears with weight

Unbiased selection scheme: w(a:) = —
()

Non-reweighting selection scheme: w(:v) =1



Method of Analysis: Asymptotics

e Compare selections schemes based on performance as the original
dataset size (N) grows to infinity.
o Number of datapoints selected (n) also grows with N
o Approaches some fixed fraction v € (0, 1)



Method of Analysis: Asymptotics

e Compare selections schemes based on performance as the original
dataset size (N) grows to infinity.
o Number of datapoints selected (n) also grows with N
o Approaches some fixed fraction v € (0, 1)

“Low-Dimensional Regime”: Keep dimension fixed as N grows

“High-Dimensional Regime”: Grow dimension with N, converging to fixed ratio



Setting 1: Low-Dimension, Perfect Surrogate
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Quantity of Interest: Asymptotic Error Coefficient

Population
(7T7 UJ) minimizer

x ) |
p(S,Q) = lim lim E[min{N|§ — 60.[/5, M}]
| |

M—00 N— o0

T

Under some assumptions: A A
- Limit exists <9 — 0., Q(9 _ 9*)>
- Has a closed form in terms of _ _
. S Best selection scheme in a class C:
- conditional gradient are min o( S
covariance of loss at 0, S SeC '0( ’ Q)

- conditional hessian of the loss
Up next: used closed-form to solve for

at 9* optimal strategy in certain classes.
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Low-Dimension
1 Perfect Surrogate

Optimal Unbiased Strategy  |w(z) = ——

m(z)

e Can simplify and optimize the asymptotic error coefficient to solve for
the optimal unbiased strategy:
o Recovers selection based on influence function

m(x;) o E{HW%%)H%‘%}

o Monotone non-increasing in selected proportion

Influence function
77/)(33: y) = _H_IVGL(O*; Y, T)

1/2

o Better than just random unbiased sampling Test |

Error = |nbiased
= Non-reweighted

4
n/N
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e Again, simplify and optimize the asymptotic error coefficient to
characterize the optimal non-reweighting strategy.

e Show that optimal strategy must be a fixed point of the following
process:
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e Again, simplify and optimize the asymptotic error coefficient to
characterize the optimal non-reweighting strategy.
e Show that optimal strategy must be a fixed point of the following
process:
o Strategy induces a score function for each point Z(x; 7T)
o Optimal strategy must be a threshold decision based on score
o Threshold parameters chosen to meet selection proportion
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(@) =< 0 if Z(x;7,,) < A,
L b(2) € [0,1] if Z(®;7.) = A.



Low-Dimension
Perfect Surrogate

Optimal Non-reweighting Strategy w(x) =1

e Again, simplify and optimize the asymptotic error coefficient to
characterize the optimal non-reweighting strategy.

e Show that optimal strategy must be a fixed point of the following
process:

o Strategy induces a score function for each point Z(:C; 7T)
o Optimal strategy must be a threshold decision based on score
o Threshold parameters chosen to meet selection proportion

n=N(=989)

if Z(x;7m,.) > A,
() = € 0 if Z(x;7m,) <A,
L b(2) € [0,1] if Z(®;7.) = A.

using HyHH; !

Linear regression setting: Z measures how different x is
from selected data (related to leverage scores)
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Optimal Non-reweighting Strategy: Proof Idea

e Suppose we have a minimizer 7,
e Imagine perturbing T, to some =; := (1 - t)7, + tm.
e (Can express perturbed error value as

p(m; Q) = p(mur; Q) — 1 / (m(z) — (@) Z (23 7,) P(de) + 0(2)
|

p(m; Q) =Tr (E{W(x)G(ﬂﬂ)}E{W(@H(m)}_IQE{W(@H(*’D)}_I) Comes from closed-form
for asymptotic error

4 - -1 -1 -1
Z(w;ﬁ) = —Tr{G(fL')Hw QH }+2Tr{H(:c)H7r QH. G-H_, } Conditional hessian

H{x) — E{VgL(O*; Y, a:)|a:}

E Conditional gradient covariance
Gﬂ' = ]E’TI'G(m) > H7T = EwH(w) , where ]Eﬂ-f($> = {f(m) 7'('(13)} 9

E{r(z)} G(x) = E{VoL(0.;y,2)VeL(8,;y,x) |z}
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Claim: Z(x;m,,) constanton all x with 7,,,.(x) € (0, 1)
o If not, can construct feasible strategy that breaks non-negativity



Optimal Non-reweighting Strategy: Proof Idea

Low-Dimension
Perfect Surrogate

Suppose we have a minimizer 7y
Imagine perturbing 7nr to some w = (1 - t)m,, + tm. Must be non-positive
Can express perturbed error value as /

P13 @) = p(mi @) — t [ (n(@) — (@) Z(ai ) P(d) + oft)

Claim: Z(x;m,,) constanton all x with 7,,,.(x) € (0, 1)
o If not, can construct feasible strategy that breaks non-positivity
Implies the threshold structure

(

1 if Z(x;7,) > A,
() =<0 if Z(x;7,) < A,
b(x) € [0,1] if Z(x;7m,) =A. the constant value

\



Non-reweighting vs Unbiased Strategies

Low-Dimension
Perfect Surrogate

Thm: Unbiased can be arbitrarily worse than non-reweighting strategies.

- In terms of ratio of asymptotic error coefficients

A

Test
Error = Unbiased
= Non-reweighted

theorized

£11%

=
o
X

9%

Misclassificatio

8%

= = Full data

=« Unbiased, Weak surrogate
=—x==_nbiased, Strong surrogate
- Biased, Weak surrogate
—x== Biased, Strong surrogate
=e= Random sampling

20% 40% 60% 80%
Percentage of data subsampled

empirically



Part 2: Imperfect surrogates, High-dimensional
asymptotics



Imperfect surrogates

So far, we assume access to (essentially) P(y|x) via a perfect surrogate
What happens if the surrogate is imperfect, so P_{su}(y|x) \neq P(y|x)
First idea: “Plug in” the surrogate (treat it as if it were truly P(y|x))

Main result from this paper: This is suboptimal, but something close to it is
roughly (minimax) optimal



First approach: Plug-in estimation

Plugin unbiased data selection. We form
G..(x) = Esu{VgL(ésu;y, )VgL( ,y,w)T|w}
H,,(z) :=E,{VjL( ‘S“;y,m)\w}

— arg min ZZ ACK S ,wz)l

7(x) = min (1; c(7y) Zsu(m)l/z) ;

Z,.(x) == Tr(Go(z)H{ L QHT L),
H,, =E{H,(x)}.

"Sll

and subsample according to  Either “read off” or I




Approach for studying optimality: minimax framework

Assume that the surrogate predictor is close to (but not equal to) true model
Hg(Pe?) 1= {P . Eg||P(: |2) — Pou( - |2)]| v < 'r} .
(Doesn’t have to be TV, but we need the set to be convex)

This allows us to define minimax risk:
Test risk of estimator
under selection
scheme S

R*(Sa %) .= Sup E'y XN]P(P)R#(S,y7X)

PeJty

Ry (Ha) = Inf R.(S;43) .



What is the optimal way to use the surrogate?

Theorem 5. Assume that any Py € Jfgn is supported on |y|| < M, and that (y,X) —
R(04(y, X)) is continuous for any A. Define

Run(Hg) = inf Ru(S; #q) = inf  sup By x.p(py)Ba(S;y, X). (5.14)
Seo Sed Pyedy N
Then we have /ion’s minimax theorem
Ryn(Hg) = sup inf By x~ppy)Ru(S;y, X) . (5.15)
PneJa N Seo

Further, assume Py achieves the supremum over g above. Then any

Sum € arg ?%Ey,X’VP(PMM)R# (S, Yy, X) (516)
e

achieves the minimax error.

Intuition: we should use the “worst P(y|x)” that is near the given surrogate



High-dimensional asymptotics

LAY E—MS
N Y P 0,

Specify to:

- Gaussian covariates (so x is drawn from isotropic Gaussian with dim p)
- Response dependent only on linear function of X: P(y € Alz;) = P(A|(8),z:))
- Generalized linear models + Ridge

Ry (0) : ZS (0™, x:)) L((0, ), yz)+—||9||2

In the next slide, we will just tryteurderstand show the theorem statement :)



Theorem statement: Setup

. <ésu7 00) - | psu
= lim ——, s:= lim ||Py0
Bo N,p—o0 ||00|| P N,p—o0 |l ¢

B

The high-dimensional asymptotics of the test error is determined by a saddle point of the following
Lagrangian (here and below a := (g, as, ) ), B := (Bo, Bs, 0)):

2 1 5 :
I~ g5med + IE{ min [S((,B, G)) L(0pGo + Gy +u, Y)+

A
g(aa.u'aw) = E”a
1
E,LL(OLJ_G_]_ — u)2] } (6.7)
Here expectation is with respect to

g = (Go,Gs,G1) ~ N(0, I3), Y ~P(-]]60]2Go) - (6.8)

as well as the randomness in S.



Theorem statement: result

Theorem 6. Assume u — L(u,y) is conver, continuous, with at most quadratic growth, and A > 0.
Further denote by a*, u* the solution of the following minimax problem (o is uniquely defined by
this copdition.)

Given a selection strategy, this tells us the (asymptotic) error!
Th (Importantly, does not identify optimal strategy)

(a) 1 Extremely vague idea: Decompose into theta_ 0 direction, theta_s

direction, and the rest (which is all indistinguishable bc of Gaussianity)

« Therestis an application of Gordon’s Gaussian comparison inequality
(generalization of Slepian’s inequality)




Special case: Gaussian x, binary y

_ _ _ Normalizing constant Second derivative of log-MGF (for logistic
Posit data selection mechanism: j regression, 1 - tanh(t)*2)

n(w;) = min (c(7) ¢" (6", @))% 1)

For alpha = 1/2 , roughly equivalent to influence function-based sampling (only
because the data is Gaussian and so the Hessian has a simple closed form)

Alpha controls whether we prefer hard examples or easy:

1
ﬂ B

AIpHa = -1 (prefer easy) Alpha =1 (prefer hard)




Results: perfect surrogate

Setting: “misspecified” linear model, so P(y=1|x) = f_1(x*T \theta)

Misclassification Rate

35% 1

A=0.1,P(Y=1|2) = f1(2)

A=0.01,P(Y=1|z)=f(2)

A=0.001,P(Y=1|z) = f1(2)

—
w—a

. — a=-10
PY .\ a=-0.5
\' @ a=0.5
§ \ —_—a=1.0
\ —— a =0 (random)
) .\. \. \.
L\ A\
T—— ~\,_.§._




Results: imperfect surrogate

Surrogate is trained with additional N_{su} samples

A=0.1,Ng, =8p,P(Y=1|2) = f(2)
w

—a =-1.0

a=-0.5
a=0.5
—a=1.0

— a =0 (random)

A=0.01,Ns, =8p, P(Y =1|2) = ,(2)

A=0.001,Ns, =8p, P(Y =1|z) =f,(2)

Percentage of data subsampled

Percentage of data subsampled

_' B J
g 25%] X% T\
o o |
_5 20% - o\, ~
= 2\
. \'\'\
Y o/
i 15% \. °\.
N SeNa ,
Tr.u) 6\. \A\ .\ '\.\
B 10% A TN Te—e=g. S~
s o—o—2= ~e—p—e—0—2=
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

Percentage of data subsampled



Takeaways (imperfect surrogate)

1. Learning after data selection often outperforms learning on the full sample.

2. Upsampling ‘hard’ datapoints (i.e. using a > 0) is often the optimal strategy. This appears
to be more common than in the well-specified case.

3. As shown in Figure 8, the performance of data selection-based learning degrades gracefully
with the quality of the surrogate.

4. In particular, we observe once more the striking phenomenon of Figure 1, cf. bottom row,
rightmost plot of Figure 8. At subsampling fraction n/N = 60%, learning on selected data
outperforms learning on the full data, even if the surrogate model only used additional
N,./N = 21.7% samples. As shown in next section, this effect is even stronger with real
data.
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