
Data selection 1

IMPROVING PRETRAINING DATA USING
PERPLEXITY CORRELATIONS

By Tristan Thrush, Christopher Potts, Tatsunori Hashimoto

Setup

Goal: select pre-training data in order to optimize performance on a fixed
benchmark

Often: train small model on a bunch of mixtures of domains (data sets), check
performance. Computationally expensive!

Here: only use “observational data” to find optimal data mix, no LLM training
required.

Input: publicly available models + data sets + their performance in benchmarks

Intuition

If for a fixed data set…

If a LLM has low loss on validation data -> high score on target benchmark

and

If a LLM has large loss on validation data -> low score on target benchmark

We would want to use this data set for pre-training (?)

Proposal

Run a regression of benchmark accuracies on domains (data set)

Each row is a LLM, each column is a domain (data set)

LLMs: 90 taken from Open LLM Leaderboard,
Domains: 9841 domains from sample-100B RedPajama V2

Seems weird, but at second glance it’s not that unusual

Similar ideas have appeared in the causal inference literature.

In the synthetic control approach, we regress a target data set (California) on
several source data sets (Texas, Washington,...)

Columns: data sets (here: data sets)

Rows: pre-treatment variables (here: LLMs)

Entries: means of pre-treatment variables (here: log-likelihoods)

Target vector: mean of post-treatment outcome (here: accuracy)

Assumption

Outcomes yi: accuracy of LLM i on benchmark data set

Covariates xij: negative log-likelihood of LLM i on document j

Parameter theta: best prediction

This is just a low-dimensional single index model that we can learn

Assumption: single index model holds not only for log-likelihoods of trained models
in leaderboard, but also for the log-likelihoods when training a new model

-> To optimize benchmark performance (left hand side), we can just optimize
weighted log-likelihoods (right hand side)

Estimating theta (idea from previous papers)

If X follow a standard Gaussian distribution, using integration by parts

where C>0. We are averaging over LLMs.

So, we can just compute the correlation between X and Y to estimate theta (up to
a constant).

Estimation

The actual proposed algorithm avoids estimating f.

Distribution of loglikelihoods has heavy tails (solution: rank correlations,
transformation)

Solutions theta may be negative and not sum up to one (solution: project theta on
probability simplex - set of nonnegative vectors that sum up to one)

In practice…

1) No weights (domain included yes/no)
2) Train FastText classifier on selected domains to be able to select documents, not just

domains

Evaluation

Fix pre-training architecture, change data sets.

Pre-training on Pythia 160M LLM configuration from Biderman et al. (2023)

Hyperparameters including learning rate, weight decay, and warmup are optimized
to minimize loss on the uniform sampling (no selection algorithm) baseline.

Benchmarks

SciQ - scientific questions

ARC easy - grade school level questions

PIQA - commonsense reasoning, physics questions

Lambada - recover missing word from corpus of text (multilingual)

Accuracy
Higher is better

Log perplexity
Lower is better

TLDR: fastText is great, perplexity pretty good

Domain selection via
importance sampling

language filter

equal weights

Data selection
method

you get performance

Aside: what is fastText (SOTA)?

https://huggingface.co/mlfoundations/fasttext-oh-eli5

Text classifier

Filter data by sorting pages by “high quality” score, until we had reached 3.2B
unique tokens.

https://huggingface.co/mlfoundations/fasttext-oh-eli5

Comments

- Should we do data selection at the domain level or document level (or both?)
- Can we improve performance by using weights (instead of include data

yes/no?). The greedy strategy should be suboptimal
- We should have a principled approach for choosing between data collection

strategies based on what type of distribution shift we have
- We probably want to find weights that do well universally across tasks
- Rank correlations are not very satisfying since they hide whether the changes

are large

Awesome!

(...) we use this paper also as a preregistration for further pretraining experiments
using different data sources and evaluation benchmarks at the 1.4B model scale.

We commit to updating the arXiv version of our manuscript with both positive and
negative results on these preregistered validation experiments.

SCALING LAWS FOR DATA FILTERING –
DATA CURATION CAN NOT BE COMPUTE AGNOSTIC

Sachin Goyal, Pratyush Maini
Zachary Lipton, Aditi Raghunathan, Zico Kolter

CLIP (Contrastive Language-Image Pretraining)

CLIP (Contrastive Language-Image Pretraining)

Setting

128M image-caption pairs, taken from DataComp (Gadre et al, 2023) medium

Split into 10 buckets of 12.8M images either by

- CLIP Score - cosine similarity between text and image embeddings
- T-MARS (Maini et al, 2023) - CLIP score after masking out text in images

https://arxiv.org/abs/2304.14108
https://arxiv.org/abs/2307.03132

Setting

128M image-caption pairs, taken from DataComp (Gadre et al, 2023) medium

Split into 10 buckets of 12.8M images either by

- CLIP Score - cosine similarity between text and image embeddings
- T-MARS (Maini et al, 2023) - CLIP score after masking out text in images

For a sufficiently high compute budget, there is an inherent tradeoff between
seeing new samples or repeating existing high quality samples

https://arxiv.org/abs/2304.14108
https://arxiv.org/abs/2307.03132

Optimal filtering depends on compute budget

Optimal filtering depends on compute budget

As you scale the compute budget, diversity becomes more important than quality

Can we predict the downstream
performance?

Scaling laws for a single bucket, single epoch

y = downstream performance

n = number of samples

a, d = problem-dependent constants

b = sample utility

Scaling laws for a single bucket, single epoch

y = downstream performance

n = number of samples

a, d = problem-dependent constants

b = sample utility

Scaling laws for a single bucket, multiple epochs

Scaling laws for a single bucket, multiple epochs

Scaling laws for a single bucket, multiple epochs

Scaling laws for a single bucket, multiple epochs

Scaling laws for multiple buckets, single epoch

Scaling laws for multiple buckets, single epoch

Scaling laws for multiple buckets, single epoch

Scaling laws for multiple buckets, single epoch

Scaling laws for multiple buckets, single epoch

Scaling laws for multiple buckets, single epoch

Scaling laws for multiple buckets, multiple epochs

Scaling laws for multiple buckets, multiple epochs

Scaling laws for multiple buckets, multiple epochs

Alternative formulations, not tested

Utility does not have to decay exponentially

Instead of decreasing effective utility, you could decrease effective sample count
(Muenninghoff et al, 2023)

https://arxiv.org/abs/2305.16264

Fitting scaling laws to CLIP buckets

Fitting scaling laws to CLIP buckets

Fitting scaling laws for single bucket, multi epoch

Testing scaling laws for multiple buckets, multi epoch

Conclusion

In settings where repetition reduces the value of a data point, there is a tradeoff
between same high quality data or more low quality data

The optimal decision depends on the amount of available compute

Scaling laws (may be able to) predict the optimal mixture

Open Problems

1. Importance of filtering in the limit

If compute increases and data stays
fixed, data filtering will be less
relevant. How much data filtering
would one like to do in the infinite
compute limit?

1. Importance of filtering in the limit

If compute increases and data stays
fixed, data filtering will be less
relevant. How much data filtering
would one like to do in the infinite
compute limit?

Open problem: build scaling laws for
the effective benefit of data as
compute increases

2. Distributionally aware filtering

Current data filtering strategies consider each domain to have additive impact.
However, the composition of your data matters: the benefit of code data may
depend on the amount of math data. With unlimited data, today’s strategies may
just pick a single domain, which is known to be suboptimal

This is really important for synthetic data, since one possible future has infinite
data from each domain with strong mode collapse concerns

3. Curriculum: does varying mixture over time help?

Given domains and a target validation set, we know that the optimal mixture can
be better than the mixture of the validation set.

3. Curriculum: does varying mixture over time help?

Given domains and a target validation set, we know that the optimal mixture can
be better than the mixture of the validation set.

Can varying the mixture over time be much better than the optimal mixture?

3. Curriculum: does varying mixture over time help?

One Evidence Against One Evidence For

Doremi mixture stabilizes quickly Industry models mix high quality data at the end

“We used curriculum learning for pretraining, changing the data mix during
training in ways we found to substantially improve model quality.” - DBRX

“We stage training to alter the mixture composition during
training – increasing the weight of domain-relevant data towards the end of
training” - Gemini

Given domains and a target validation set, we know that the optimal mixture can
be better than the mixture of the validation set.

Can varying the mixture over time be much better than the optimal mixture?

