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Overview

• Divides data attribution into three categories 

1. Corroborative  e.g., citation generation


2. Game-theoretic  e.g., Data Shapley


3. Predictive  e.g., influence functions, datamodeling
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Data Shapley
[GZ19, JDW+19]

• Given some performance score  (e.g., test accuracy), want data 
attribution  satisfying the following properties


1.  If  for all subsets , then 


2.  If  for all  then 


3.  If , then 

V( ⋅ )
ϕi

V(S) = V(S ∪ {i}) S ϕi = 0

V(S ∪ {i}) = V(S ∪ {j}) i, j ϕi = ϕj

V( ⋅ ) = V1( ⋅ ) + V2( ⋅ ) ϕV
i = ϕV1

i + ϕV2
i



Characterization

 must be of the form:
ϕi

ϕi = C ⋅ ∑
S⊆D−{i}

V(S ∪ {i}) − V(S)

(n − 1
|S | )



Predictive attribution

• Non-axiomatic approach  how does fitting to point  affect the prediction?


• Leave-one-out approach: how does the fit change if we drop point  from 
the model?


• Data-modeling: can we fit a predictive model for data  prediction
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LOO / influence function

 = model parameters if we remove the -th data point


Sometimes this is easy to compute:


OLS:             

̂θ−j j

̂θ − ̂θ−j =
(x⊤

j
̂θ − yj)(∑n

i=1 xix⊤
i )−1xj

1 − x⊤
j (∑n

i=1 xix⊤
i )−1xj



LOO / influence function
Not OLS?

• For generalized linear models , we can take a Newton step on 
the leave-one-out loss





• Possible because the inverse Hessian for the leave-one-out loss can be updated 
efficiently via Sherman-Morrison-Woodbury

{σ(θ⊤x) ∣ θ ∈ ℝd}

̂θ−j ≈ ̂θ − H−1
̂θ,−j

∇θℒ−j( ̂θ) =
H−1

̂θ ⋅ (ℒ′ j( ̂θ⊤xj) ⋅ xj)

1 − ℒ′ ′ j ( ̂θ⊤xj) ⋅ x⊤
j H−1

̂θ xj



Aside: Sherman-Morrison-Woodbury

• If we have the inverse of some matrix , it is very easy to compute the 
inverse of  + a low-rank update:


 


No  matrix inversion required!

H
H

(H + uv⊤)−1 = H−1 −
H−1uv⊤H−1

1 + v⊤H−1u

O(n3)



Influence functions
Beyond (G)LMs

• When our model class is more flexible (e.g., NNs), we cannot SMW our way to 
success


• Previous approach relies on second-order Taylor expansion of leave-one-out-
loss around 


• New approach: second-order Taylor expansion of full loss around 

̂θ
̂θ



Influence functions
(cont.)

Write   


Using the second-order Taylor expansion of  around , we compute 


ℒ( ̂θ) =
n

∑
i=1

wiℓ( ̂θ; xi, yi)

ℒ( ̂θ) ̂θ
∂ ̂θ
∂wj

̂θ−j ≈ ̂θ −
∂ ̂θ
∂wj

= ̂θ + H−1
̂θ

ℓ′ j( ̂θ; xj, yj)



Commentary
Comparing the two approaches

1. Influence function extrapolates from local perturbations of the full loss 
quadratic approximation 

2. Approx. LOO runs a Newton step on the leave-one-out quadratic 
approximation


•  Both approaches require a leap of faith (maybe formally, some form of leave-
one-out stability?)



Influence functions
In practice

• Smart Hessian approximations (e.g., via structural approximation, Gauss-
Newton-Hessian approx.)


• (Approximately) unrolling gradient descent 


• Replacing the NN with a surrogate model (e.g., TRAK)


• But there’s no really clear picture of what is best…





Data modeling
DsDm: Model-aware data selection with Datamodels




• How do we select a training set of size  that ensures good performance on a 
target population?


• Key idea: build datamodel that maps dataset composition to target loss

S* = argminS⊂𝒮,|S|=kℒ𝒟targ
(S)

where ℒ𝒟(S) := 𝔼𝒟[ℓ(x; 𝒜(S)]

k



Datamodels are linear

 


each data point has a separable and additive effect on the final loss 

• Select the  data points corresponding to the smallest values of 


• Success?

ℒ̂target(S) = θ⊤
x 1S

k θx



Results



But how do datamodels work?
Original approach (Ilyas et al. 2022)

• Collect a large “meta”-dataset consisting of resampled training sets and 
models fit to those training sets 


1. Sample a new training data set 


2. Fit model by running 


3. Estimate test accuracy of fitted model: 


• Fit a linear model on  that predicts the test accuracy of each fitted model

S′ 

𝒜(S′ )

ℒtarget(S′ )

1S



Data regression works!



Practical implementation
TRAK

• Refitting the model many times is completely infeasible


• Idea: replace  with some simpler algorithm  that we can easily 
recompute for changes to the sample


• What sorts of algorithms are easy to recompute? 

𝒜(S) 𝒜′ (S)



Recomputing 𝒜′ (S)

• Paper overloads the term “influence function” - here it refers to the approx. 
LOO approach:


IF(z) arises from performing a Newton step from logistic model parameters for S to minimize loss on S \ z_i.



Where do we get a logistic regression from?

• First, they linearize the predictor


• Second, they plug that into a logistic loss function



TRAK subtleties

• It’s still completely impractical to compute the influence function


• Random projection of gradient reduces the dimensionality of the matrix 
inverse while preserving inner products (J-L)



Commentary

• There are a lot of approximations inside of the datamodeling application here 

1. Linear data model


2. Influence functions in place of data regression


3. Kernel approximation to neural network 


4. Various term ablations + random projections of feature vectors


