
John Cherian

Data Attribution
REFORM reading group

Overview

• Divides data attribution into three categories 

1. Corroborative e.g., citation generation

2. Game-theoretic e.g., Data Shapley

3. Predictive e.g., influence functions, datamodeling

↝

↝

↝

Overview

• Divides data attribution into three categories 

1. Corroborative e.g., citation generation

2. Game-theoretic e.g., Data Shapley

3. Predictive e.g., influence functions, datamodeling

↝

↝

↝

Data Shapley
[GZ19, JDW+19]

• Given some performance score (e.g., test accuracy), want data
attribution satisfying the following properties

1. If for all subsets , then

2. If for all then

3. If , then

V(⋅)
ϕi

V(S) = V(S ∪ {i}) S ϕi = 0

V(S ∪ {i}) = V(S ∪ {j}) i, j ϕi = ϕj

V(⋅) = V1(⋅) + V2(⋅) ϕV
i = ϕV1

i + ϕV2
i

Characterization

 must be of the form:
ϕi

ϕi = C ⋅ ∑
S⊆D−{i}

V(S ∪ {i}) − V(S)

(n − 1
|S |)

Predictive attribution

• Non-axiomatic approach how does fitting to point affect the prediction?

• Leave-one-out approach: how does the fit change if we drop point from
the model?

• Data-modeling: can we fit a predictive model for data prediction

↝ i

i

↦

LOO / influence function

 = model parameters if we remove the -th data point

Sometimes this is easy to compute:

OLS:

̂θ−j j

̂θ − ̂θ−j =
(x⊤

j
̂θ − yj)(∑n

i=1 xix⊤
i)−1xj

1 − x⊤
j (∑n

i=1 xix⊤
i)−1xj

LOO / influence function
Not OLS?

• For generalized linear models , we can take a Newton step on
the leave-one-out loss

• Possible because the inverse Hessian for the leave-one-out loss can be updated
efficiently via Sherman-Morrison-Woodbury

{σ(θ⊤x) ∣ θ ∈ ℝd}

̂θ−j ≈ ̂θ − H−1
̂θ,−j

∇θℒ−j(̂θ) =
H−1

̂θ ⋅ (ℒ′ j(̂θ⊤xj) ⋅ xj)

1 − ℒ′ ′ j (̂θ⊤xj) ⋅ x⊤
j H−1

̂θ xj

Aside: Sherman-Morrison-Woodbury

• If we have the inverse of some matrix , it is very easy to compute the
inverse of + a low-rank update:

No matrix inversion required!

H
H

(H + uv⊤)−1 = H−1 −
H−1uv⊤H−1

1 + v⊤H−1u

O(n3)

Influence functions
Beyond (G)LMs

• When our model class is more flexible (e.g., NNs), we cannot SMW our way to
success

• Previous approach relies on second-order Taylor expansion of leave-one-out-
loss around

• New approach: second-order Taylor expansion of full loss around

̂θ
̂θ

Influence functions
(cont.)

Write

Using the second-order Taylor expansion of around , we compute

ℒ(̂θ) =
n

∑
i=1

wiℓ(̂θ; xi, yi)

ℒ(̂θ) ̂θ
∂ ̂θ
∂wj

̂θ−j ≈ ̂θ −
∂ ̂θ
∂wj

= ̂θ + H−1
̂θ

ℓ′ j(̂θ; xj, yj)

Commentary
Comparing the two approaches

1. Influence function extrapolates from local perturbations of the full loss
quadratic approximation 

2. Approx. LOO runs a Newton step on the leave-one-out quadratic
approximation

• Both approaches require a leap of faith (maybe formally, some form of leave-
one-out stability?)

Influence functions
In practice

• Smart Hessian approximations (e.g., via structural approximation, Gauss-
Newton-Hessian approx.)

• (Approximately) unrolling gradient descent

• Replacing the NN with a surrogate model (e.g., TRAK)

• But there’s no really clear picture of what is best…

Data modeling
DsDm: Model-aware data selection with Datamodels

• How do we select a training set of size that ensures good performance on a
target population?

• Key idea: build datamodel that maps dataset composition to target loss

S* = argminS⊂𝒮,|S|=kℒ𝒟targ
(S)

where ℒ𝒟(S) := 𝔼𝒟[ℓ(x; 𝒜(S)]

k

Datamodels are linear

each data point has a separable and additive effect on the final loss

• Select the data points corresponding to the smallest values of

• Success?

ℒ̂target(S) = θ⊤
x 1S

k θx

Results

But how do datamodels work?
Original approach (Ilyas et al. 2022)

• Collect a large “meta”-dataset consisting of resampled training sets and
models fit to those training sets

1. Sample a new training data set

2. Fit model by running

3. Estimate test accuracy of fitted model:

• Fit a linear model on that predicts the test accuracy of each fitted model

S′

𝒜(S′)

ℒtarget(S′)

1S

Data regression works!

Practical implementation
TRAK

• Refitting the model many times is completely infeasible

• Idea: replace with some simpler algorithm that we can easily
recompute for changes to the sample

• What sorts of algorithms are easy to recompute?

𝒜(S) 𝒜′ (S)

Recomputing 𝒜′ (S)

• Paper overloads the term “influence function” - here it refers to the approx.
LOO approach:

IF(z) arises from performing a Newton step from logistic model parameters for S to minimize loss on S \ z_i.

Where do we get a logistic regression from?

• First, they linearize the predictor

• Second, they plug that into a logistic loss function

TRAK subtleties

• It’s still completely impractical to compute the influence function

• Random projection of gradient reduces the dimensionality of the matrix
inverse while preserving inner products (J-L)

Commentary

• There are a lot of approximations inside of the datamodeling application here 

1. Linear data model

2. Influence functions in place of data regression

3. Kernel approximation to neural network

4. Various term ablations + random projections of feature vectors

